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ABSTRACT
The determination of centre of a graph is very important task in facility location
problem. Computation of centre depends on the computation of radius of the
graph. In this paper, we have design some parallel algorithms to find the average
distance, radius, diameter and centre of a circular-arc graph. The proposed
parallel algorithms run in O(n2/p + log n) time on a EREW PRAM, where p
and n represent respectively the number of processors and the number of vertices
of the circular-arc graph.
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1. Introduction
A graph G = (V, E) is called an intersection graph for a finite family F of a non-

empty set if there is a one-to-one correspondence between F and V such that tow sets in F
have non-empty intersection if and only if their corresponding vertices in V are adjacent to
each other. We call F an intersection model of G. For an intersection model F, we use G(F)
to dentoe the intersection graph for G. If F is a family of arcs on a circle, then G is called a
circular-arc graph for F and F is called a circular-arc model of G. If F is a family of line
segments on real line, then G is called an interval graph for F.

Circular-arc graphs have many applications in different fields such as genetic research,
traffic control, computer complier design etc. Tucker [43], proposed an O(n3) time algorithm
for recognizing a circular-arc graph. Deng et al. [11] presented an O(n + m) time algorithm
for presentation of circular-arc graph.
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1.1. Our work
In this paper, parallel algorithms are presented to compute the average distance of a circular-
arc graph, eccentricities of all vertices of a circular-arc graph, radius and diameter of a
circular arc-graph and the centres of a circular-arc graph. The above mentioned algorithms
are designed based on the parallel algorithm CAPSP [36] which is used to find all-pair

shortest paths on circular-arc graphs. The parallel algorighms take 
2

log
n

O n
p

 
+  

 
 time

using p processors on an EREW PRAM.

2. Definitions and Notations
Let S = {a1, a2,..., an} be a family of n arcs on a circle C. Each endpoint of the arcs in
assigned to a positive integer, called a coordinate. The endpoints of each arc are ocated on
the circumference of C in the ascending order of the values of the coordinates in the clockwise
direction. For convenience, each are ai, i = 1, 2,..., n, is represented as (hi, ti), where hi (the
head) and ti (the tail) denote, respectively that starting and ending points of the arc when it
is traversed in counterclockwise manner, starting with an arbitrary chosen point on C which
is not an endpoint of any arc in S.

Without loss of generality, we assume the following :
(i) no single arc in S covers the entire circle C by itself (otherwise, the shortest path

problem becomes trivial and in this case the distance between any two arcs is
either 1 or 2 unit),

(ii) no two arcs share a common endpoint,

(iii) 1
n
i iU C C= =  (otherwise, the problem becomes one on interval graph),

(iv) the endpoints of the arcs in S are already given and sorted, according to the order
in which they are visited during the clockwise (anticlockwise, if necessary)
traversal along C by starting at a1, and

(v) the arcs are sorted in increasing values of hi’s i.e., hi > hj for i > j.
The family of arcs S is said to be cannonical if
(i) hi’s and ti’s for i = 1, 2, ..., n are all distinct integers between 1 and 2n, and
(ii) point 1 is the head of the arc a1.

A path of a graph G is an alternating sequence of distinct vertices and edges, beginning
and ending with vertices. The length of a path is the number of edges in the path. A path
from vertex i to j is a shortest path if there is no other path from i to j with lower length. The
shortest distance (i.e., the length of the shortest path) between the vertices i and j is denoted
by δ(i,j).

For illustration we consider circular-arc graphs shown in Figure 1.
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Figure 1 : Circular-arc graphs and their circular-arc representation.

Alternatively, a circular-arc graph can be defined as follows :
An undirected graph G = (V, E) is a circular-arc graph if and only if
(i) its vertices circularly indexed as v1

, v2,...,vn, and
(ii) (vi, vj) ∈ E, provided ai and aj intersect with each other, where vi and vj are the
vertices in the graph G corresponding to the arcs ai and aj is S respectively.
It may be noted that the arc ai and the vertex vi or i are one and the same thing.

3.  All Pairs Shortest Distances
Shortest-paths problems are among the most fundamental and also the most commonly
encountered graph problems, both in themselves and as subproblems in more complex setting
[3]. Besides obvious applications like preparing travel time and distance charts [21], shortest
paths computation is frequently needed in telecommunications and transportation industries
[38], where message or vehicles must be sent between two geographical locations as quickly
or as cheaply as possible. Other examples are complex traffic flow simulatyions and planning
tools [21], which rely on a large number of individual shortest paths problems. further
applications include many practical integer programming problems. Shortest paths computations
are used as subroutines in solution procedure for computational biology (DNA sequence
alignment [44], VLSI design [8], knapsack packing problems [18], travelling salesman problems
[24] and for many other problems. A diverse set of shortest path models and algorithms have
been developed to accommodate these various applications.

The sequential algorithm of O(n3) time to solve all-pairs shortest paths (APSPs) problem
on arbitrary graph with n vertices due to Floyd [16] is well known. Ahuja et al. [1] have
given a faster sequential algorithm using Radix heap and Fibonacci heap for the single source

shortest path problem; the algorithm runs in ( )logO m n C+  time for a newtork with n

vertices and m edges and non-negative integer arc costs bounded by C. In [39], Seidel has
given an O(M(n) log n) time sequential algorithm for APSP problem for an undirected and
unweighted arbitrary graphs with n vertices, M(n) being the time necessary to multiply two
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n×n matrices of small integers; the best known time for M(n) is of O(n2.376). Alon et al. [2]
have reported a sub-cubic algorithm for computing all-pairs shortest distances on directed
graphs with integer edge-lengths. The algorithm requires O((Wn)ν) time, where n = (3 + ω)/
2, ω < 3, and W is the largest edge-length. Galil et al. [19] have improved the dependence on
W and have also given an O(W(ω + 1)/2nωlog n) algorighm for undirected graphs. Fredman
[17] given the first subcubic algorithm for all-pairs shortest paths. His algorithm runs in

( ) 13 3log log / logO n n n     time. Later Takaoka [41] improved the upper bounds for all-

pairs shortest paths to ( )
13 2log log / logO n n n  

 
. Dobosiewicz (6) given an upper bound of

( )
13 2/ logO n n  

   with extended operations such as normalization capability of floating point

numbers in O(1) time. In [22], Han presented an improve algorithm to find all-pairs shortest

paths. The algorithm runs in ( )
53 7log log / logO n n n  

 
 time. An algorithm is presented in

[25] to find the next-to-shortest paths in a general graph. When the size of the graph is very
large, i.e., the entire graph cannot be stored into the main memory then a new type of the
algorighm is required to solve all-pairs shortest path problem. In [40], an algorithm is designed
to find external matrix multiplication and this result is used to solve all-pairs shortest path
problem. Ravi et al. [35] and Mirchandani [27] have given sequential algorithms to solve
APSP problem on an interval graph in O(n2) time. Pal and Bhattacharjee [34] have designed
a parallel algorithm to solve APSP problem on interval graphs using O(n2/p + log n) time and
p processors on a EREW PRAM. Mondal et al. have solved APSP problem on permutation
graphs [30] and on trapezoid graphs [29] in O(n2) time.

1 2 3 4 5 6 7 8
1 0 1 1 2 2 3 2 1
2 1 0 2 3 3 4 3 2
3 1 2 0 1 1 2 2 3
4 2 3 1 0 1 2 2 3
5 2 3 1 1 0 1 1 2
6 3 4 2 2 4 0 2 3
7 2 3 2 2 1 2 0 1
8 1 2 2 3 2 3 1 0

Table 1 : The all pairs shortest distances of the circular-arc graph of Figure 1(a).
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Saha et al. [36] have designed a parallel algorithm to find all pairs shortest distances of
a circular-arc graph.

The all pairs shortest distances, using the algorithm CAPSP of Saha et al. [36], of the
graph of Figure 1(a) are shown in Table 1.

The complexity of the algorithm CAPSP [36] to compute the all-pair shortest distances
is stated in the following theorem.

Theorem 1. The all-pairs shortest distances of a circular-arc graph with n vertices
can be computed in O(n2/p + log n) time using p processors on an EREW PRAM.

The algorithm is cost optimal when p is equal to O(n2/log n).

From the above theorem one can conclude the following result.

Theorem 2. The all-pair shortest distances of a circular-arc graph with n vertices can
be computed in O(n2) time.

4. Average Distance
Many works on average distance in graphs are available in literature [4, 5, 12, 13, 15, 23, 28,
42, 45, 46]. Chung [7] give a bound of average distance of a graph in terms of independent
number. He shown that µ(G) ≤ α(G), where µ(G) and α(G) denote respectively the average
distance and the independent number of the graph G.

Also in [10], the average distance of an interval graph with edges of unit length can be
computed in O(m) time where m is the number of edges. In this section, we discuss about the
computation of average distance of a circular-arc graph.

The average distance µ(G) of a connected circular-arc graph is defined to be the
average of all distances in G

( ) ( ) ( )
( ),

1
, ,

1 x y V G
x y

G x y
n n ∈

≠

µ = δ
− ∑

where δ (x,y) denotes the length of a shortest path joining the vertices x and y. The average
distance can be used as a tool in analytic networks where the performance time is proportionsl
to the distance between any two nodes. It is a measure of the time needed in the average
case, as opposed to the diameter, which indicates the maximum performance time.

4.1. Algorithm to compute average distance and its computation
At first we compute δ (x,y) for every pair x, y(x ≠  y) using Algorith CAPSP then we
compute the sum of distance between all pairs of vertices, and finally we multiply it by the

factor ( )
1

1n n −  to get the average distance. From above procedure it follows that the time to
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compute the average distance is same as the time to compute all pairs shortest distances.
Hence, we can draw the following conclusion.

Theorem 3. The average distance of a circular-arc graph can be computed in sequential
using O(n2) time, where n is the number of vertices of the graph.

Theorem 4. The average distance of a circular-arc graph with n vertices can be
computed in parallel using O(n2/p + log n) time and p processors on an EREW PRAM.
The algorith is cost optimal when p is equal to O(n2/p + log n).

vertex 1 2 3 4 5 6 7 8 Total
distance 12 18 11 14 11 17 13 14 110

Table 2 : The sum of the distance from a vertex to all other vertices of the graph of Figure
1(a).

The total distances from a vertex to all other vertices of the graph of Figure 1(a) are
shown in Table 2.

Finally, the average distance of the graph of Figure 1(a) is

( ) 55
.

28
Gµ =

5. Centre and Diameter
Location problem is a topic of great important in the fields such as transporation, communication,
service areas and computer sciences. The criteria for the locating problem in the literature
are minmax criteria in which the distance to the furthest vertex from the site is minimized
and minsm criteria in which the total distance to the vertices from the site is minimized.

The eccentricity e(i) of a vertex i in a graph is the distance from vertex i to a vertex
furthest from i. Vertex j is said to be a furthest neighbour of the vertex i if δ (i, j) = e(i).
The diameter of a graph G is the maximum among all eccentricities. The radius of a graph
is the minimum among all eccentricities. A centre of a graph is a vertex whose eccentricity
equal to radius.

The eccentricity, diameter (diam (G)), radius (ρ (G)) and centre (C(G)) of a graph are
defined as follows.

e(i) = max {δ (i, j) : j ∈ V}
diam (G) = max {e(i) : i ∈ V}

ρ (G) = min {e(i) : i ∈ V}

C(G) = {u V : e(u) = ρ (G)}.
The cemtre of a graph may be a single vertex or more than one vertices.
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Determining the diameter of a graph is a fundamental and seemingly quite time-consuming
operation. For arbitrary graphs, the current algorith runs in O(nm) time, which is too slow to
be practical for very large graphs [9].

For some particular types of graph such as tree [20], outerplanar graph [14] etc. linear
time algorithms can be devised to compute the centre. For the interval graph O(n) time
sequential algorithm is presented for computing diameter and centre of an interval graph
with n vertices by Pal and Bhattacharjee [32]. In [31], Olariu has presented an O(n + m)
time sequential algorith where input is an adjacency list that takes O(n + m)  space, where n
and m are the number of vertices and edges respectively. A linear time algorith for solving
the centre problem is presented by Lan et al. [26] for cactus graph.

vertex 1 2 3 4 5 6 7 8
eccentricities 3 4 2 3 3 4 3 3

Table 3 : The eccentricities of the vertices of the graph of Figure 1(a).

5.1.  Procedure to compute radius, diameter and centre
In this section, a method is presented to find the eccentricities of all vertices. Using the
eccentricities of the vertices the diameter, radius and centre of a circular-arc graph is
computed.

For a given circular arc graph, G = (V, E) the all pairs shortest distances δ (x, y) for all
x, y∈V can be determined by using the algorith of Saha et al. [36]. Then the eccentricity of
the vertex x can be compted using the formla

e(u) = max {δ (u, v) : v∈V} for all u∈V.

The radius ρ (G) and diameter diam (G) are determined by the formula

ρ (G) = min {e(u) : u∈V}
and

diam (G) = max {e(u) : u∈V}
After determination of the radius one can test whether a vertex is a member of the

cener or not using the following technique :
If e(u) = ρ (G) then u is a member of C(G) for all u∈V.

The eccentricities of all vertices of the graph of Figure 1(a) are shown in Table 3.
The radius and the diameter of the graph of Figure 1 are

ρ (G) = min {e(u) : u∈V} = 2
and

diam (G) = max {e(u) : u∈V} = 4.
Since the radis of the graph of Figure 1(a) is 2 and which is attained at the vertex 3, the

center of this graph is 3, i.e., C(G) = {3}. While the center of the graph of Figure 1(b) is
C(G) = {1, 3, 6}.
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Since the radius of the graph of Figure 1(a) is 2 and which is attained at the vertex 3, the
centre of this graph is 3, i.e., C(G) = {3}. While the centre of the graph of Figure 1(b) is
C(G) = {1, 3, 6}.

Since the all-pairs shortest distances are known, the eccentricities of all vertices can be
computed using the same time and processors, used to solve all-pairs shortest distances.

The following results follow from the definitions of radius, diameter, centre and theorems
1 and 2.

Theorem 5. The eccentricities of all vertices, diameter, radius and centre of a cricular-
arc graph with n vertices can be computed in sequential using O(n2) time.

Theorem 6. The eccentricities of all vertices, diameter, radius and centre of a circular-
arc graph with n vetices can be computed in parallel using O(n2/p + log n) times and p
processors.
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