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ABSTRACT
In this paper, we consider the following high-order neutral difference equations
with continuous arguments

( ) ( ) ( )( ) ( ) ( ) ( )( )1 nn x t p t x t q t x g tτ∆ − − σ = −

where n ≥  1 is an integer, [ ]( )0, , , , , ,R q g C t R+ +τ σ∈ ∈ ∞  ( )0, ,R+ = ∞

( ) ( ) ( )0, , lim .
t

q t g t t g t
→∞

≡ ≤ = ∞/  We obtain the existence of nonoscillatory

solutions under some conditions and necessary and sufficient conditions by using
proper fixed point theorem.

Keywords : Neutral difference equations; Nonoscillatory solutions; Existence; Integral
transformations.

1. Introduction
In this paper, we consider the following high-order neutral difference equations with

continuous arguments

( ) ( ) ( )( ) ( ) ( ) ( )( )1 nn x t p t x t q t x g tτ∆ − − σ = − (1)

where n ≥  1 is an integer, [ ]( )0, , , , , ,R q g C t R+ +τ σ∈ ∈ ∞  ( )0, ,R+ = ∞  ( ) ( )0, ,q t g t t≡ ≤/

( )lim .
t

g t
→∞

= ∞  The forward difference τ∆  is defined as usual, i.e., ( ) ( ) ( ).x t x t x tτ∆ = + τ −

Throughout the paper we shall define the usual factorial expression
j(k) = j(j – 1) ... (j – k + 1), j(0) = 1.
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By a solution of Eq.(1), we mean a function x(t) which is defined for all t – σ ≥  t0,
g(t) ≥ t0 and satisfies Eq.(1).

The neutral difference equations are increasingly noticed in many fields. The most
important reason is that many problems in other fields such as biology, population dynamics
and economics may be translated into models of difference equation.

Oscillation and nonoscillation theories of neutral functional differential equations and
difference equations have developed very quickly in recent years. We refer to [1-12]. Zhang,
Bi [7] investigated the oscillation of solution of second order neutral difference equation with
continuous argument. Existence of nonoscillatory solutions of high-order neutral differential
equations with positive and negative coefficients

( ) ( ) ( ) ( ) ( ) ( ) ( )11 0
m

n
m

d
x t cx t P t x t Q t x t

dt

+ + − τ  + −  − σ − − σ  =   

has been investigated by Zhou and Zhang [11]. The higher-order neutral difference equations
with continuous arguments have received much less attention, which is mainly due to the
technical difficulties arising in its analysis. In particular, there is no nonoscillation result for
Eq.(1).

In this paper, we obtain the existence of nonoscillatory solutions under some conditions
and necessary and sufficient conditions by using proper fixed point theorem.

A solution x(t) of Eq.(1) is called oscillatory if it is neither eventually positive nor
eventually negative, otherwise, it is nonoscillatory. The equation is called oscillatory if all its
solutions are oscillatory.

Throughout the paper we will use an equality :

( )( )

( ) ( ) ( )
1 2 1 1

1

0 0

2

1 !
n n n

n

i i i i i i

n i
q t i q t i

n
− − −

−∞ ∞ ∞ ∞

= = = =

+ −
+ τ = + τ

−∑ ∑ ∑ ∑L

2. Related Lemma and Main Results
Lemma 2.1. Suppose that p(t) is bounded and x(t) is a bounded positive solution of

Eq.(1). Set z(t) = x(t) – p(t)x(t – σ ). Then ( ) 1,2,...,i z t i nτ∆ =  is constant sign,

( )( ) ( )1 0i i z tτ− ∆ > , i = 1, 2, ..., n, and ( )lim 0.i

k
z t kτ

→∞
∆ + τ =

Proof. Due to x(t) and p(t) are bounded, z(t) is bounded. ( )1n z t−
τ∆  is increasing on t from

( ) 0n z tτ∆ > . We shall show ( )1 0n z t−
τ∆ < , If not, there exists T > t0, such that ( )1 0n z T−

τ∆ ≥ .

Due to ( ) ( ) ( )1 2 2n n nz T z T z T− − −
τ τ τ∆ = ∆ + τ − ∆ , there exists l1 > 0 such that

( ) ( )2 2
1

n nz T z T l− −
τ τ∆ + τ > ∆ + . So ( )2lim n

k
z T k−

τ
→∞

∆ + τ = ∞ , which contradicts the
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boundedness of z(t). Thus we have shown ( ) 0n z tτ∆ <  and ( )n tτ∆  is constant sign. By

induction we have ( ) ( )1 0i i z tτ− ∆ >  and ( ) ( )1 i i z tτ− ∆  is constant sign for i = 1, 2, ..., n. From

above we have ( )i z tτ∆  is bounded.

Next we shall show ( )lim 0i

k
z t kτ

→∞
∆ + τ = . If not, when i is odd, we know

( ) ( )1 0i i z tτ− ∆ < . Assume there exists l2 > 0 such that ( ) 2lim 0i

k
z t k lτ

→∞
∆ + τ = − < . So there

exists N such that ( ) 2 / 2i z t k lτ∆ + τ < −  for k > N. So ( )( )1 1i z t N−
τ∆ + − τ <

( )1
2 / 2i z t N l−

τ∆ + τ − . We have ( )1lim i

k
z t k−

τ
→∞

∆ + τ = −∞ , which contradicts the boundness

of z(t). When i is even, we can get a contradiction similar to the above proof. So

( )lim 0i

k
z t kτ

→∞
∆ + τ = .

Theorem 2.1. Assume there exist positive constants p1, p2 such that

( )1 2 01 ,p p t p t t< ≤ ≤ ≥ (2.1)

Then Eq.(1) has a bounded positive solution between two positive constants if and
only if

[ ]

( )( )

( )( ) ( )
0 0

1

1
, 0

2
sup

1

n

n
t t t i

n i
q t i

n

−∞

−
∈ +τ =

+ −
+ τ < ∞

−
∑ (2.2)

Proof. Sufficiency. Consider the Banach space BC of all continuous bounded functions x

defined on [t0, ∞ ] with sup norm, i.e., ( )
0

sup
t t

x x t
≥

= . Let Ω  denote the subset of BC

defined by

( ) ( ) ( )
1 1

2 1

2 4
:
3 1 3 1

p p
x BC x t

p p

  Ω = ∈ ≤ ≤ 
− −  

then Ω  is a bounded, closed and convex subset of BC.

By (2.2) let 1 1
4
−

∈
p

, there exists N, such that

[ ]

( )( )

( )
( )

0 0

1
1

, 1

2 1
sup

1 ! 4

n

t t t i N

n i p
q t i

n

−∞

∈ +τ = =

+ − −
+ τ <

−∑
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for n ≥ N. So

[ ]

( )( )

( ) ( )
0 0

1
1

, 1

1 2 1
sup

1 ! 4

n

t t t i N

n i N p
q t i

n

−∞

∈ +τ = +

+ − − − −
+ τ <

−∑

that is

[ ]

( )( )

( ) ( )( )
0 0

1
1

, 0

2 1
sup 1

1 ! 4

n

t t t j

n j p
q t N j

n

−∞

∈ +τ =

+ − −
+ + τ + τ <

−∑

Let t1 = t0 + (N + 1) τ , so

( ) ( )

( )( )

( ) ( )
0 0

1
1

1
1 , 2 0

2 1
sup

1 ! 4

n

t t N t N j

n j p
q t j

n

−∞

∈ + τ + + τ  = 

+ − −
+ τ <

−∑

i.e.

( )
1 2 1 1

1

0

1
...

4
n n ni i i i i

p
q t i

− − −

∞ ∞ ∞

= = =

−
+ σ + τ <∑ ∑ ∑  for t > t1. (2.3)

Define a mapping :T BCΩ →  as follows :

( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

( )( )

1

1 11
0

1 0 1

21
,

1

,

n

n
i

n i
p x t q t i x g t i t t

p tTx t n

Tx t t t t

−∞

−
=

  + −  + + σ − + σ + τ + σ + τ ≥  + σ=  − 
≤ ≤

∑

we shall show TΩ ⊂ Ω . In fact, for every x ∈Ω  and 1t t≥ , using (2.1) we get

( )( ) ( ) ( ) ( )
1 1 1

1
1 1 1 1

4 3 1 41

3 1 3 1 3 1

p p p
Tx t p

p p p p

  +
≤ + = ≤ 

− − −  

and

( )( ) ( ) ( ) ( )
1 1 1 1

1 0
2 2 1 2

2 1 4 21

3 1 4 3 1 3 1

p p p p
Tx t p t t

p p p p

 −
≥ + − = ≥ 

− − −  

Thus we prove that T maps Ω into Ω. Next we shall show T is a contraction on Ω.
In fact, for any x , y ∈ Ω and t ≥ t0, using (2.1) (2.3) we have

( )( ) ( )( )Tx t Ty t−
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( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( )
1

1
0

21

1

n

n
i

n i
x t y t q t i x g t y g t

p t n

−∞

−
=

 + − ≥ + σ − + σ + + σ + τ + σ + τ − + σ + τ
 + σ − 

∑

( )
( )( )

( )( ) ( )
1

1
0

21
1

1

n

n
i

n i
q t i x y

p t n

−∞

−
=

 + − ≤ + + σ + τ −
 + σ − 

∑

1

1

11
1

4
p

x y
p

− ≤ + − 
 

1

1

3
4

p
x y

p
+

= −

where 1

1

3
0 1

4
p

p
+

< < , which shows that T is a contraction on Ω. Then by the Banach

contraction principle, T has a fixed point x ∈ Ω, that is, Tx = x. So x(t) is a bounded positive

solution of Eq. (1) on [ )1,t ∞ .

Necessity. Let x(t) be a bounded positive solution between two positive constants of Eq. (1).

That is ( )0 l x t L< ≤ ≤ . Set ( ) ( ) ( ) ( )z t x t p t x t= − − τ . When n is even, we have

( ) ( ) ( )( ) ( )n z t q t x g t lq tτ∆ = ≥

Summing the above inequality on i from 1 to N and set ,N → ∞  Using Lemma 2.1 we get

(2.2) holds. When i is odd, we have

( ) ( ) ( )( ) ( )n z t q t x g t lq tτ∆ = ≤ −

Summing the above inequality in i from 1 to N and let ,N → ∞  using Lemma 2.1 we get

(2.2) holds.

Example 1. Consider the difference equation

( ) ( )
( ) ( )( )( )

2
3
1 3

2 1 1 3
0

2 1 2 21 3

t t
x t x t x

t t t t

 −     ∆ − − + =    −    − + 

In out notation, n = 3, τ = 1, σ = ½, q(t) = 2
t ,  ( )

( )( )( )3

3
,

1 3
q t

t t
=

− +
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( ) ( )
( )

2 1
1 1.5 2.

2 1

t
p t

t t

−
< ≤ = ≤

+
 It is easy to show that the conditions (2.1) (2.2) in Th. 2.1 are

satisfied. Therefore, the equation has a bounded positive solution between two positive

constants. In fact, ( ) 1
1

2
x t

t
= −  is the solution satisfied the conditions.

Theorem 2.2. Assume there positive constants P3 > 0 such that

( ) 30 1p t p≤ ≤ < (2.4)

p(t) and q(t) will not become zero at the same time, and (2.2) holds. Then Eq. (1) has a
bounded positive solution.

Proof. From (2.2), there exists t2 such that

( )( )

( )( ) ( )
1

3 21
0

2
1,

1

n

n
i

n i
p q t ir t t

n

−∞

−
=

+ −
+ + ≤ ≥

−
∑ (2.5)

Let BC be the set as in the proof of Theorem 2.1. Set

( ){ }: 0 1x BC x tΩ = ∈ ≤ ≤

Define an operator :T BCΩ → as follows :

( )( )
( ) ( ) ( )( )

( )( ) ( ) ( )( )

( )( )

1

21
0

2 0 2

2

1

n

n
i

n i
p t x t q t ir x g t ir t t

Tx t n

Tx t t t t

−∞

−
=

 + −
 − σ + + + ≥=  −


≤ <

∑

Set ( ) ( ) ( )( )0 11, k kx t x t Tx t−= =       01,2,..., .k n t t= ≥

It is easy to show

( ) ( )1 0 1x t x t≤ = [ )0 ,t t∈ ∞ .

By induction we have ( ) ( )10 1k kx t x t+≤ ≤ ≤    [ )0 , , 1,2,...,t t k n∈ ∞ =  In fact,

( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )
1

1 1 11
0

2

1

n

k k k kn
i

n i
x t Tx t p t x t q t i x g t i

n

−∞

− − −−
=

+ −
= = − σ + + τ + τ

−
∑
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( ) ( ) ( )( )

( )( ) ( ) ( )( )
1

1
0

2

1

n

k kn
i

n i
p t x t q t i x g t i

n

−∞

−
=

+ −
≥ − σ + + τ + τ

−
∑

( )1 ,kx t+=

using (2.4) (2.5) we get

( ) ( )( )

( )( ) ( )
1

3 1
0

2
0 1

1

n

k n
i

n i
x t p q t i

n

−∞

−
=

+ −
≤ ≤ + + τ ≤

−
∑ .

By Lebesgue’s convergence theorem we have

( )
( ) ( ) ( )( )

( )( ) ( ) ( )( )

( )

1

21
0

2 0 2

2

1

n

n
i

n i
p t x t q t i x g t i t t

x t n

x t t t t

−∞

−
=

 + −
 − σ + + τ + τ ≥=  −


≤ <

∑

We shall show x(t) > 0. If not, there exists T > t2 such that x(T) = 0 and x(t) > 0 for

2t t T≤ < .  Under the condition of p(t), q(t), we get ( ) ( ) ( )x T p T x T≥ − σ  or

( ) ( ) ( )( )x T q T x g T≥ . So ( ) 0x T − σ =  or ( )( ) 0x g T = . Due to T T− σ <  and ( )g T T<

we get a contradiction. Hence x(t) is a bounded positive solution of Eq. (1).

Example 2. Consider the difference equation

( ) ( )
( ) ( )

( )( )

2
4
1 5

2 48
2

2 1 55

t t
x t x t x

t t t

 −   ∆ − − =   −  + 

In our notation, 4,n = 1τ = , 2,σ = ( )
5
t

g t = , ( )
( )( )5

48
,

5
q t

t
=

+
 ( ) ( )( )

( )
2 2

0
2 1

t t
p t

t t

+ −
≤ = ≤

−

3
1,

4
< as 4.t ≥  It is easy to show that the conditions (2.1) (2.2) in Th. 2.1 are satisfied.

Therefore, the equation has a bounded positive solution between two positive constants. In

fact, x(t) = 1 + 
1
t

 is the solution satisfied the conditions.



8 Yu Tian

Example 3. Consider the difference equation

( ) ( ) ( ) ( )3
1

1 2
2 0

8 16 2 1

t t

t
x t x t x t

− + ∆ − − + = 
  +

In our notation, n = 3, τ = 1, σ = 2, ( ) 1
,

8
p t =  ( ) ,g t t=  ( ) ( )

2

16 2 1

t t

t
q t

− +

=
+

 It is easy to

show that the conditions (2.2) (2.4) in Th. 2.2 are satisfied. Therefore, the equation has a

bounded positive solution. In fact, ( ) 1 2 tx t −= +  is the solution satisfied the conditions.

Theorem 2.3. Assume ( )0 1p t≤ <  and there exists 0,α >  such that

( ) ( ) ( )( )

( )( ) ( ) ( )( )
1

1
0

2
lim sup exp exp 1

1

n

nt i

n i
p t q t i t g t i

n

−∞

−→∞ =

 + −  ασ + + τ −α − + + τ <  −  
∑   (2.6)

Then Eq. (1) has an eventually positive solution which tends to zero as t → ∞ .

Proof. We assume that there exists 3 0t t>  such that 0t t− σ ≥  and ( ) 0g t t≥  for 3t t≥  and

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )
1

1
0

2
exp exp 1

1

n

n
i

n i
t p t q t i t g t i

n

−∞

−
=

+ −
 β = ασ + + τ −α − + + τ < −

∑ (2.7)

Let Y be the set of all continuous functions y defined on [ )0 ,t ∞  satisfying ( )0 1y t≤ ≤  for

0t t≥ . Set Y be endowed with the usual point-wise ordering : 1 2y y≤  if ( ) ( )1 2y t y t≤  for all

0t t≥ . it is easy to see that for any subset A of Y, there exist inf A and sup A.

Define an operation on Y as follows :

( )( )

( ) ( ) ( )
( )( )

( )( ) ( ) ( )( ) ( )( )

( )( ) ( )

1

31
0

3 3 0 3

exp

2
exp

1

exp 1

n

n
i

p t y t

n i
Sy t q t i y g t i t g t i t t

n

Sy t t t t t t

−∞

−
=

 ασ − σ +

 + −  = + τ + τ −α − + + τ ≥  

−
  + ε − − ≤ <  

∑
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where 
( )( )3

3 0

ln 2 t

t t

− β
∈=

−
.

We will show SY ∈ Y. In fact, for any y ∈Ω  and 3t t≥ , using (2.6) (2.7) we have

( )( ) ( ) ( ) ( )expSy t p t y t= ασ − σ

( )( )

( )( ) ( ) ( )( ) ( )( )
1

1
0

2
exp

1

n

n
i

n i
q t i y g t i t g t i

n

−∞

−
=

+ −
 + + τ + τ −α − + + τ 

−
∑

( ) ( ) ( )( )

( )( ) ( ) ( )( )
1

1
0

2
exp exp

1

n

n
i

n i
p t q t i t g t i

n

−∞

−
=

+ −
 ≤ ασ + + τ −α − + + τ 

−
∑

31, ,t t< ≥

and

( )( ) ( )( ) ( )3 3exp 1Sy t Sy t t t = + ε − − 

( ) ( )3exp 1t t t ≤ β + ε − − 

0 31, ,t t t≤ ≤ <

and ( )( ) 0Sy t > . So ( )( ) ,Sy t Y∈  i.e., SY Y∈ . Moreover S is a nondecreasing mapping. By

Knaster’s fixed point theorem, there exists y Y∈  such that Sy y= . Since y(t) > 0 for

0 3t t t≤ ≤ , it follows that ( ) 0y t >  for all 0t t≥ .

Let ( ) ( ) ( )expx t y t t= −α  we get

( ) ( ) ( )( ) ( ) ( ) ( )( )1 nn x t p t x t q t x g t t Tτ∆ − − σ = − ≥

i.e., x(t) is a positiove solution of Eq. (1) and ( )lim 0
t

x t
→∞

= .

Example 4. Consider the difference equatio

( ) ( )3 3 4
1

1 1
1 .2 0

18 9 4
t t

x t x t x−  ∆ − − + =  
  

In our notation, n = 3, τ = 1, σ = 1, ( ) 1
,

18
p t =  ( ) ,

4
t

g t = ( )
3

41
. 2 .

9

t
q t

−
=  Clearly,,
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( )0 1p t≤ < . We will show (2.6) holds. In fact, let 
1
2

α =

( )( )
( 1)

( 1)
0

( 2)
( )exp( ) ( )exp

( 1)

−∞

−
=

+ −  ασ + + τ −α − + + τ −
∑

n

n
i

n i
p t q t i t g t i

n

=
( )( ) ( ) 132

2 44

0

1
2

18 18

+ − +∞ − − + 
 

=

+
+ ∑

t it i t

i

ie
e

<
( )( )23 / 4 7

8

0

11 2
. 2 1

9 18

− ∞ −

=

+ 
+ < 

 
∑

t i

i

i

e

The above inequality holds for all large t, i.e. (2.6) holds. Therefore, the equation has a

bounded positive solution positive solution which tends to zero as t → ∞. In fact, ( ) 2−= tx t

is the solution satisfied the conditions.

Theorem 2.4. Assume ( ) 1≡p t . Then Eq. (1) has a bounded positive solution if and

only if

( )( )

( )( ) ( )
1

01
0 0

2

1

−∞ ∞

−
= =

+ −
+ τ − σ < ∞

−
∑∑

n

n
k i

n i
q t i k

n
(2.8)

Proof. Sufficiency. Fro (2.8) there exists t4 such that t4 > t0 and

( )( )

( )( ) ( )
1

1
0 0

2 1
21

−∞ ∞

−
= =

+ −
+ τ − σ ≤

−
∑∑

n

n
k i

n i
q t i k

n
(2.9)

Let BC the set as in the proof of Theoren 2.1. Set

( )1
: 1

2
 Ω = ∈ ≤ ≤ 
 

x BC x t

Define operator : Ω →T BC  as follows :

( )( )
( )( )

( )( ) ( ) ( )( )

( )( )

1

41
0 0

4 0 4

21
2 1

−∞ ∞

−
= =

 + −
 + + τ − σ + τ − σ ≥=  −


≤ <

∑∑
n

n
k i

n i
q t i k x g t i k t t

Tx t n

Tx t t t t

Set x0(t) = 1
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xk(t) = (Txk–1)(t)  k = 1, 2, ...,

It is easy to show ( ) ( ) ( )1 0 0
1

1
2

x t x t t t≤ ≤ = ∈ ∞ . By induction we have

( ) ( )1 0
1

1, [ , ), 1,2,...
2 k kx t x t t t k+≤ ≤ ≤ ∈ ∞ =

By Lebergue’s monotonic convergence theorem, T has a fixed point x, i.e. Tx = x.
Hence x(t) is a bounded positive solution of Eq. (1).
Necessity. Let x(t) be a bounded positive solution of Eq. (1). So

( ) ( )( )0 1 0 1
n

n nx t i i k x t i i kτ∆ + τ + + τ − σ − − σ + τ + + τ − σL L

= ( ) ( ) ( )( )0 1 0 11 n
n nq t i i k x g t i i k− + τ + + τ − σ − τ + + τ − σL L

Summing above equality in i1, i2, ..., in, k from 0 to N set N → ∞ , by Lemma 2.1 we have

( ) ( )
1 2 1 1

0 0 1 2
0 0n n

n
k i i i i i

x t q t i i i k
−

∞ ∞ ∞ ∞

= = = =
= + τ + τ + + τ − σ ×∑ ∑ ∑ ∑L L

( )( )0 1 2 nx g t i i i k+ τ + τ + + τ − σL (2.10)

=
( )( )

( )( ) ( ) ( )( )
1

0 01
0 0

2

1

n

n
k i

n i
q t i k x g t i k

n

−∞ ∞

−
= =

+ −
+ τ − σ + τ − σ

−
∑∑ .

Set ( ) ( ) ( )y t x t x t= − − σ . We shall show that y(t) > 0. If not, there exists T > t0, l > 0 such

that y(T) = –l < 0. So ( ) ( ) 0x T x T l− − σ = − < , that is ( ) ( )lim lim ,
k k

x T n x T nl
→∞ →∞

+ σ = − = −∞

which contradicts the boundness of x(t). So y(t) > 0 i.e. x(t) > x(t – σ ). So there exists M>0

and T > t0 such that ( )( )x g t M≥  for t T≥ . From (2.10) we get

( ) ( )( )

( )( ) ( )
1

0 01
0 0

2

1

n

n
k i

n i
x t q t i k M

n

−∞ ∞

−
= =

+ −
≥ + τ − σ

−
∑∑

So (2.8) holds.

Theorem 2.5. Assume there exists positive constants p4 such that

( )41 0p p t− < ≤ < (2.11)

and (2.2) holds. Then Eq. (1) has a bounded positive solution.
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Proof. From (2.2), there exists t4 > t0 such that

( )( )

( )( ) ( )
1

4
51

0

2 1
,

21

n

n
i

n i p
q t i t t

n

−∞

−
=

+ − +
+ τ ≤ >

−
∑ (2.12)

Let BC be the set as in the proof of Theorem 2.1. Set

( )
( ) ( )4 4 4

4 4

1
:

2 1 1

p p p
x BC x t

p p

 + Ω = ∈ ≤ ≤ 
− −  

Define an operator :T BCΩ →  as follows :

( )( )
( ) ( ) ( )( )

( )( ) ( ) ( )( )

( )( )

1
4

51
0

5 0 5

2

2 1

n

n
i

n ip
p t x t q t i x g t i t t

Tx t n

Tx t t t t

−∞

−
=

 + −
− + − σ + + τ + τ ≥=  −


≤ <

∑

For every x ∈Ω , using (2.11) (2.12) we get

( )( ) 4 4 4 4

4 4

1
2 2 1 1
p p p p

Tx t
p p

+ −
≤ − + × =

− −

and

( )( ) ( )
( )

4 44 4
4

4 4

1

2 1 2 1

p pp p
Tx t p

p p

+ −
≥ − + = − − 

So TΩ∈Ω .

Next we will show that T is a contraction on Ω . In fact, for any ,x y∈Ω  and 0t t≥ , using

(2.11) (2.12) we have

( )( ) ( )( )Tx t Ty t− ( ) ( ) ( )p t x t y t≤ − σ − − σ

( )( )

( )( ) ( ) ( )( ) ( )( )
1

1
0

2

1

n

n
i

n i
q t i x g t i y g t i

n

−∞

−
=

+ −
+ + τ + τ − + τ

−
∑

( )( )

( )( ) ( )
1

4 1
0

2

1

n

n
i

n i
p q t i x y

n

−∞

−
=

 + − ≤ − + + τ −
 − 

∑
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4
4

1
2
p

p x y
+ ≤ − + − 

 

41
2
p

x y
−

= −

where 411
1

2 2
p−

< < . Hence

( )( ) ( )( )
0

41
sup

2t t

p
Tx Ty Tx t Ty t x y

≥

−
− = − ≤ −

which shows that T is a contraction on Ω . Then by Banach contraction principle, T has a

fixed point x∈Ω , i.e. Tx = x. So x(t) is a bounded positive solution of Eq. (1).
Example 5. Consider the difference equation

( ) ( )
( )( ) ( ) ( )3

1 4

1 1 33
4 0

4 2 3 3

t
x t x t x t

t t t

  ∆ − − + − + =  
   + +

In our notation, n = 3, ( ) ( ) ( )
( )( ) ( )4

1 1 33
1, 4, , , .

4 2 3 3

t
p t g t t q t

t t t
τ = σ = = − + = =

+ +

Clearly, conditions (2.2) (2.11) in Th. 2.5 hold. Therefore, the equation has a bounded positive

solution. In fact, ( ) 1 1
3

x t
t

= +  is the solution satisfied the conditions.

Theorem 2.6. Assume there exist negative constants p5, p6 such that

( )2
5 6 5 1p p p t p− < ≤ ≤ < − (2.13)

and (2.2) holds. Then Eq. (1) has a bounded positive solution.

Proof. There exists M such that 6
5

5

0
p

M p
p

< < − −  and. From (2.2), there exists t5 > t0 for

5

1
1l

p
− < < , such that

( )( )

( )( ) ( )
1

61
5 0

21
1 1,

1

n

n
i

n i
q t i l t t

p n

−∞

−
=

 + − + + τ + σ ≤ < >
 − 

∑ (2.14)
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and

( )( )

( )( ) ( )
1

1
0

2

1

n

n
i

n i
q t i M

n

−∞

−
=

+ −
+ τ + σ <

−
∑ (2.15)

Let BC be the set as in the proof of Theorem 2.1. Set

( ) ( ) ( )
2 2

5 5 6 6 5

5 6 5 6 6 6 5 6

:
1 1

p M p p p p
x BC x t

p p M p p p p M p p

 + + + Ω = ∈ ≤ ≤ 
+ − + −  

Define an operator :T BCΩ →  as follows :

( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

( )( )

1

61
0

6 0 6

21
1

1

n

n
i

n i
x t q t i x g t i t t

p tTx t n

Tx t t t t

−∞

−
=

  + −−  − + σ + + τ + σ + τ + σ ≥  + σ=  − 
≤ <

∑

For every x ∈Ω , using (2.13), (2.15) we get

(Tx)(t) ( )
( )

( )

22
6 55 5 6

5 5 6 6 5 6 5 6 6 5 6

1

1 1

M p pp M p p

p p p p M p p p p p M p p

++ +
≤ − − +

+ − + −

( )
2
6 5

6 6 5 6 1
p p

p p M p p
+

=
+ −

and

( )( ) ( )
2
6 5

6 5 6 6 5 6

1
1

p p
Tx t

p p p p M p p
+

≥ − −
+ −

( )
2

5 5 6

5 6 5 6 1
p M p p

p p M p p
+ +

=
+ −

So .TΩ∈Ω
Now we will show that operator T is a contraction on Ω. In fact, for any x, y ∈ Ω and

6t t≥ , using (2.13), (2.14) we get

( )( ) ( )( )Tx t Ty t−

( )
( ) ( )1

x t y t
p t

 ≤ + σ − + σ + σ
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( )( )

( )( ) ( ) ( )( )
1

1
0

2

1

n

n
i

n i
q t i x g t i

n

−∞

−
=

+ −
+ + τ + σ + τ + σ
− 

∑

( )( )

( )( ) ( )
1

1
5 0

21
1

1

n

n
i

n i
q t i x y

p n

−∞

−
=

 + −
 ≤ + + τ + σ −
 − 

∑

l x y≤ −

where 0 < l < 1. So T is a contraction. By Banach contraction principle, T has a fixed
point T has a point x, i.e. Tx = x. Hence x(t) is a bounded positive solution of Eq. (1).

Example 6. Consider the difference equation

( ) ( ) ( )
( ) ( )

( )4
1 5

4 1 24ln
1 ln

4 ln 1

t t
x t x t x t

t t t

 − 
∆ − − = 

+ + 

In our notation, n = 4, τ = 1, σ = 1, ( ) ( )4 1 t
p t

t

−
= ,  ( )g t t= ,

( )
( ) ( )5

24ln

4 ln 1

t
q t

t t
=

+ +
.

Clearly, the conditions (2.2) (2.13) in Th. 2.6 hold. Therefore, the equation has a bounded

positive solution. In fact, ( ) 1
1x t

t
= +  is the solution satisfied the conditions.

Theorem 2.7. Assume ( ) 1p t ≡ − , kσ = τ , and (2.2) holds. Then Eq. (1) has a bounded

nonoscillatory solution.
Proof. From (2.2), there exists t7 > t0 such that

( )( )

( )( ) ( ) ( )
1 2 1 1

1

71
0 0

2 1
... ,

21 n n n

n

n
i i i i i i

n i
q t i q t i t t

n − − −

−∞ ∞ ∞ ∞

−
= = = =

+ −
+ τ = + τ ≤ >

−
∑ ∑ ∑ ∑ (2.16)

Let BC be the set as in the proof of Theorem 2.1. Set
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( )1
: 1

2
x BC x t Ω = ∈ ≤ ≤ 

 

Define an operator :T BCΩ →  as follows :

( )( )
( ) ( )( )

( )

( )( )
1 2 1 1

2 1

1 1 7
1 2 1

7 0 7

1
...

2
n n n

jk

n n
j i j k i i i i

q t i i x g t i i t t
Tx t

Tx t t t t
− − −

−∞ ∞ ∞

− −
= = − = =


+ + τ + τ + τ + τ ≥

= 
 ≤ <

∑ ∑ ∑ ∑

Using (2.16) it is easy to show TΩ∈Ω . Now we shall show that the operator T is a contraction

on Ω. In fact, for every x, y ∈ Ω, using (2.16) and 7t t≥ , we get

( )( ) ( )( )Tx t Ty t− ( )
( )1 2 1 1

2 1

1
1 2 1

...
n n n

jk

n
j i j k i i i i

q t i i
− − −

−∞ ∞ ∞

−
= = − = =

≤ + τ + τ∑ ∑ ∑ ∑

( )( ) ( )( )1 1n nx g t i i y g t i i− −+ τ + τ − + τ + τ

( )
1 2 1 1

1
0

...
n n n

n
i i i i i

q t i i x y
− − −

∞ ∞ ∞

−
= = =

≤ + τ + τ −∑ ∑ ∑

1
2

x y≤ −

Hence

( )( ) ( )( )
0

1
sup

2t t
Tx Ty Tx t Ty t x y

→
− = − ≤ −

which shows that T is a contraction on Ω. Then by Banach contraction principle, T has a

fixed point ,x∈Ω

( ) ( ) ( )( )
( )1 2 1 1

2 1

1 1
1 2 1

1
...

2
n n n

jk

n n
j i j k i i i i

x t q t i i x g t i i
− − −

−∞ ∞ ∞

− −
= = − = =

= + + τ + τ + τ + τ∑ ∑ ∑ ∑

That is to say ( ) ( ) ( ) ( )( )
1 2 1 1

1 1
0

1 ...
n n n

n n
i i i i i

x t x t q t i i x g t i i
− − −

∞ ∞ ∞

− −
= = =

+ + σ = + + τ + τ + τ + τ∑ ∑ ∑

So x(t) is bounded nonoscillatory solution of Eq. (1).
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