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ABSTRACT 

This paper purposes, a mathematical non linear programming method to 
construct the membership function of a total cost in a queuing decision 
problem with cost co-efficient and the arrival rate being fuzzy 
trapezoidal numbers The basic idea is to transform a fuzzy queuing cost 
problem with finite capacity to a family of conventional crisp queues 
cost problem with finite capacity by applying the a cut approach and 
Zadeh's extension principle A set of parametric non linear programs are 
developed to calculate the lower and upper bound of the minimal 
expected total cost per unit time at a, through which the membership 
function of the total cost is constructed. A numerical example is given 
by specifying two queuing models with finite capacity and among the 
models, the total minimal cost is obtained by using the proposed 
method. 

 
1. Introduction 

Queuing decision problem play an important role in the queuing system design 
that involves one or many decision such as the number of servers at a service facility, the 
efficiency of the servers. A queuing cost based decision model is to determine a suitable 
service rate such that the sum of the cost of offering the service and cost of delay in 
offering the service is minimized. Many researchers like Papadopoulos [14], Waller Shih 
[16], Larsen [12], Arnott et al [2], Kerbache [10] and Smith Johnson [9] and Kwik and 
Tielemans [11] have published many papers on this topic. 

Queuing decision problem can be solved when the cost co-efficient and the 
arrival or service pattern are known exactly. There are cases that these parameters may 
not be presented precisely. In many practical situations, the statistical information are 
described by linguistic terms such as fast moderate slow, rather than probability 
distributions Obviously when the cost co-efficient, arrival rates are fuzzy, the minimal 
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expected total cost per unit time will be fuzzy. Therefore the minimal expected total cost 
should be described by the membership function rather than by a crisp value.  

In this paper we developed a mathematical non-linear parametric programming 
[17] approach for the queuing decision problem by the basic idea of Zadeh's extension 
principle and a cut representation [3, 4]. A set of non linear programming problems are 
formulated to calculate the upper and lower bound of a cut of the minimal expected total 
cost and consequently membership function of the minimal expected total cost is derived. 

 
2.  Fuzzy Queuing Decision Problem with Finite Capacity 

We consider an (FM/M/1) : (N/FCFS) queuing model in which customers arrive 

at the service facility at rate λ  where λ  is a fuzzy number and at service rate µ  . If a 
queuing system has limited capacity of N customer, the cost per service per unit time is 

1
~C , cost of waiting per customer per unit time is 2

~C  the cost of serving each additional 

customer per unit of time is C3 and the cost of lost customer is C4 where 1
~C  and 2

~C , are 
fuzzy numbers. 

Let ( ) ( ),,
1

u
c

x µµλ  and ( )v
c2

µ  denoted the membership functions of 1
~,Cλ  and 2

~C respectively. 

We have the following fuzzy sets. 

  λ  ( )( ){ }Xxx x ∈µ=
λ
~,  (1a) 

 1
~C  ( )( ){ }1~

1
, Cuu u

c ∈µ=  (1b) 

 2
~C  ( )( ){ }2~

2
, Cvv v

c ∈µ= , (1c) 

where X, C1, C2 are the crisp universal sets of arrival and cost co-efficient. Let f(x, u, v) 

denote the system characteristics of interest. Sinceλ , 1
~C and 2

~C  are fuzzy numbers,                 

f( λ , 1
~C , 2

~C ) is also a fuzzy number. 
Following Zadeh’s extension principle [19] the membership function of expected total 
cost is defined as 

( )
( ) ( ) ( ) ( ) ( ){ }vuxfzv

C
u

C
xz

CCf
,,/,,minsup

2121
~~~,~,

=µµµ=µ λλ
 (2) 

The minimal expected total cost of a crisp queuing system [7, 8] with finite capacity is 
given by 
( ) 4N321 cPλNcLcµcCE +++=  (3) 

The membership function for the minimal cost is 
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( )
( ) ( ) ( ) ( ){ }4N3

v
C~

u
C~

x
λ

z
C~E
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21

+++==  (4) 

In this paper we approach the representation problem using a mathematical programming 

technique parametric NLPs are developed to find the α  cut f ( λ , 1
~C , 2

~C ) based on the 
extension principle. 
 
3. Solution Procedure 

Definitions for the α  cuts of µ , 1
~C , 2

~C  as crisp intervals [20] are as follows. 

( ) [ ] ( ){ } ( ){ }[ ]α≥µα≥µ==αλ λλαα xxxxxx UL maxmin,  (5a) 

( ) [ ]UL uuu αα=α ,   

( ) ( ){ } ( ) 























α≥
µ

α≥µ=α u
c

u
c

uuu
1

1 ~
~ max,min   (5b) 

( ) [ ]UL vvv αα=α ,  

 ( ){ } ( ) 























α≥
µ

α≥µ= v
c

v
c

vv
2

2 ~
~ maxmin  (5c) 

As a result, the bound of these intervals can be described as functions of α  and can be 
obtained as 

  ( ) ( )αµ=αµ= −
λα

−
λα

11 maxmin UL xx  

  ( ) ( )αµ=αµ= −
α

−
α

11
11
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U

c
L uu  
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α

−
α

11
22
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U
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Therefore we can use the α  cuts of to construct its membership function. Since the 
membership function defined in (4) is parameterized byα . 

Using Zadeh’s extension principle, ( )cE ~µ  is minimum of ( )x
λ

µ~ , ( )u
c1
~µ  and ( )v

c2
~µ . To derive 

the ( )cE ~µ , we need at least one of the following cases to hold such that 

4N3 cPxNcLvµuZ +++=  



20 A. Nagoor Gani  and W. Ritha 

 

Satisfies ( )( ) α=µ zcE ~  

Case i :   ( ) ( ) ( ) α≥µα≥µα=µ
λ

v
c

u
c

x
21

~~~ ,,  

Case ii : ( ) ( ) ( ) α≥µα=µα≥µ
λ

v
c

u
c
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21

~~~ ,,  

Case iii : ( ) ( ) ( ) α=µα≥µα≥µ
λ

v
c

u
c

x
21

~~~ ,,  

This can be accomplished using parametric NLP techniques. The NLP to find the lower 
and upper bounds of the cut of ( )cE ~µ  for case (i) are 

  ( )[ ] [ ]4N3
L
α cPxNcLvµumincE 1 +++=  (6a) 

 ( )[ ] [ ]4N3
U
α cPxNcLvµumaxcE 1 +++=  (6b) 

for case ii. Are 

  ( )[ ] [ ]4N3
L
α cPxNcLvµumincE 2 +++=  (6c) 

 ( )[ ] [ ]4N3
U
α cPxNcLvµumaxcE 2 +++=  (6d) 

and for case (iii) are 

 ( )[ ] [ ]4N3
L
α cPxNcLvµumincE 3 +++=  (6e) 

 ( )[ ] [ ]4N3
U
α cPxNcLvµumaxcE 3 +++= . (6f) 

From the definitions of ( ) ( ) ( )αααλ vu ,,  in ( ) ( ) ( ) ( )α∈α∈αλ∈ 21 ,,5,5,5 CvCuxcba  

can be replaced by [ ] [ ] [ ]ULULUL vvvuuuxxx αααααα ∈∈∈ ,,, . The α  cut form a nested 

structure with respect toα  {6a, 6b, 6c, 6d, 6e, 6f]. For given 10 12 <α<α< we have 

 [ ] [ ]ULUL xxxx 2211 ,, αααα ⊆  

 [ ] [ ]ULUL uuuu 2211 ,, αααα ⊆  

  [ ] [ ]ULUL vvvv 2211 ,, αααα ⊆  

Therefore ((6a), (6c), (6e)) have the same smallest element and ((6b), (6d), (6f)) have the 
same largest element. To find the lower and upper board of E(c), 

 ( )[ ] [ ]43min cxPNcLvucE N
L +++µ=  (7a) 

Such that ULULUL vvvuuuxxx αααααα ≤≤<≤≤≤≤ ,  
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 ( )[ ] [ ]43max cxPNcLvucE N
U +++µ=α  (7b) 

Such that ULULUL vvvuuuxxx αααααα ≤≤<≤≤≤≤ ,  

At least any one of x, u, v must hit the boundaries of their α  cut satisfying ( ) ( ) α=µ zcE ~ . 

Applying the results of Zimmerman and Kaufmann [20] and convexity properties, we 
have 

( )[ ] ( )[ ]LL cEcE 21 αα ≥   and  ( )[ ] ( )[ ]UU cEcE 21 αα ≤  

where 10 12 ≤α≤α≤  

If both ( )[ ]LcE α  and ( )[ ]UcE α  are invertible with respect to, then a left shape function 

( ) ( )[ ] 1−
α= LcEZL  and right shape function ( ) ( )[ ] 1−

α= UcEZR  can be derived, such that  
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In most cases, the values of ( )[ ] LcE α  and ( )[ ]UcE α  cannot be solved analytically. 

Consequently, a closed form membership function for ( )cE ~  cannot be obtained. 

However, the numerical solution for ( )[ ] LcE α  and ( )[ ]UcE α  at different possibility 

levels can be collected to approximate the shape of L(Z) and R(Z). 
 
4. Solution Algorithm 

 Inputs the arrival rate, service cost, waiting cost are trapezoidal fuzzy numbers 
represented by (x1, x2, x3, x4) (u1, u2, u3, u4), (v1, v2, v3, v4) Out the 

numbers ULUL uuxx αααα ,,, , ULUL ffvv αααα ,,, . 

Step 1 : For 0=α  to 1 Step 0.1 

Step 2 : ( ) 112 xxxxL +α−=α  

 ( ) ( )α−−=α 344 xxxxU  

 ( ) 112 uuuuL +α−=α  

 ( ) ( )α−−=α 344 uuuuU  

 ( ) 112 vvvvL +α−=α  
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 ( ) ( )α−−=α 344 vvvvU  

Step 3 : For x =  Lxα to Uxα  

 For u = Luα to Uuα  

 For v = Lvα to Uvα  

Step 4 : ( ){ }),,(minarg vuxff L =α  

 ( ){ }),,(maxarg vuxff U =α  

Step 5 : Out put Lxα , Uxα , Luα , Uuα , Lvα , Uvα , Lfα , Ufα  

Step 6 : Stop 

The numerical solutions of Lfα , Ufα at different α  levels can be gathered to approximate 

the shape of L(Z) and R(Z) from which the membership function can be constructed. 
 
5. Numerical Example  

To demonstrate how the proposed approach can be applied to analyze fuzzy 
decision questing problem with finite capacity, we present some examples often 
encountered in real fuzzy environment 

A pizza unlimited restaurants has two franchises Model A has a capacity of 20 
groups of customers and model B can seat 30 groups of customers. The monthly 

operating cost of model A is a frizzy trapezoidal number 1
~C = [10,000 11,500 12,500 

14,000] An investor wants to set up a pizza restaurant and estimates that group of 
customers each occupying one table arrive according to a Poisson distribution at the rate 

of λ
~

= [20 23 27 30] per hour. It all the tables are occupied, customers will go elsewhere. 
Model A will serve 26 groups per hour and model B will serve 29 groups per hour. 
Because of the variation in group sizes and in the types of orders, the service time is 
exponential. The investor estimates that the average cost of lost business per customer 
group per hour is Rs.15 The cost of serving additional Customer Rs.5. A delay in serving 

waiting customers is estimated as fuzzy trapezoidal number 2
~C = [5, 7, 12, 16] per 

customer group per hour. The Manager of restaurant wants to determine the optimum 
model so that the total expected cost per unit time is minimized. 

For Model A, it is easy to find 

[ ] [ ]α−α+=αα 330,320, UL xx  
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[ ] [ ]α−α+=αα 150014000,1500000,10, UL uu  

[ ] [ ]α−α+=αα 416,25, UL vv  

Next it obvious 

UU xuxx αα ==  and Uvv α=  the expect total cost of queuing decision problem 

attains its maximum value and when LLL xvuuxx ααα === , , the expected total cost 

attains its minimum value. According to the cut of expected total cost of a queuing 
systems are 
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With the help of MATLAB 6.0, in used to solve the above mathematical 
programs and then the shape of can be found for given. Here we enumerate 11 value of   
0, 0.1, 0.2, …, 1.0. The figures depict the rough shape µ  from 22 values 
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( )[ ] ( )[ ][ ]U
α

L
α cE,cE  for these values. The present the corresponding α  cuts of µ . 

 
Table 1 : The α  cuts of Total Expected Minimum cost per unit time at eleven α  

values in Model A. 

α  ( )[ ]L
αcE  ( )[ ]U

αcE  

0 2,60,120 3,64,400 
.1 2,64,020 3,60,480 
.2 2,67,920 3,56,570 
.3 2,71,820 3,2,660 
.4 2,75,720 3,48,740 
.5 2,79,630 3,44,830 
.6 2,83,530 3,40,910 
.7 2,87,430 3,87,000 
.8 2,91,340 3,33,090 
.9 2,95,240 3,29,180 
1 2,99,150 3,25,260 

For Model B restaurant 

[ ] [ ]α−α+=αα 330,320, UL xx  
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[ ] [ ]α−α+=αα 100020000,500010000, UL uu  

[ ] [ ]α−α+=αα 416,25, UL vv  
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Table 2 : The α  cuts of Total Expected Minimum cost per unit time at eleven α  

values in Model B. 

α  ( )[ ]L
αcE  ( )[ ]U

αcE  

0 2,90,160 5,80,410 
.1 3,04,660 5,77,490 
.2 3,19,160 5,74,580 
.3 3,33,660 5,71,670 
.4 3,48,170 5,68,760 

.5 3,62,670 5,65,840 

.6 3,77,170 5,62,930 

.7 3,91,670 5,60,020 

.8 4,06,170 5,57,110 

.9 4,20,670 5,54,200 
1 4,35,180 5,51,290 

 
When the arrival rate, operating cost per unit of time a cost of delay in serving 

waiting customer are fuzzy the minimal expected total cost per unit time is also fuzzy. 
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Specifically the cut of α  = 1 shows the minimal expected total cost per unit time that is 
most likely to be and the cut of α  = 0 shows the range that the minimal expected total 
cost per unit time could appear In model A, the minimal total cost like between 2,60,120 
and 3,64,400 lakhs. For Model B, the minimal total cost lies between 2, 90,160 and                  
5, 80,410. 

 
6. Conclusion 

Note that the membership function of the minimal expected total cost per unit 
time is in Model A Clearly if the obtained results of crisp values, then it may lose some 
useful information. In this paper since the fuzzy minimal expected, total cost per unit time 
is expressed by a membership function, it completely conserve the fuzziness. 

 
From the above figure, the Manager decides to prefer Model A, since the minimal total 
cost is obtained from the specified Model in which minimal total cost of the model is                
2, 60, 116 
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