
Journal of Physical Sciences, Vol. 29, 2024, 47-59 

ISSN: 2350-0352 (print), www.vidyasagar.ac.in/publication/journal 

Published on 31 December 2024 

DOI: http://dx.doi.org/10.62424/jps.2024.29.00.06 

 

47 

 

 Novel Spectral Conditions for Diagonalizability and 

Connectivity in Spectral Fuzzy Graph Theory 

 Buvaneswari Rangasamy1, Senbaga Priya Karuppusamy*2 and Farshid 

Mofidnakhaei3 

1Department of Mathematics, Sri Krishna Arts and Science College  

Coimbatore, Tamil Nadu, India. 

Email: buvanaamohan@gmail.com 
2Department of Mathematics, Sri Krishna Arts and Science College  

Coimbatore, Tamil Nadu, India 

Email: ksenbagapriya@gmail.com 
3Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran 

Email: Farshid.Mofidnakhaei@gmail.com 
*Corresponding Author 

ABSTRACT 

This paper explores the properties of fuzzy matrices in fuzzy graphs and the conditions for 

the diagonalizability of fuzzy matrices. Necessary and sufficient conditions for fuzzy 

graphs to have non-negative and distinct eigenvalues are provided, and the existence of 

orthogonal eigenvectors corresponding to distinct eigenvalues in fuzzy matrices are 

discussed. Also, conditions for the second smallest eigenvalue of the Laplacian matrix are 

established to ensure connectivity in fuzzy graphs.  
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1. Introduction 

A graph 𝐺 = (𝑉, 𝐸) is a mathematical construct comprising vertices interconnected by 

edges. The study of graphs, known as graph theory, traces its origins to Euler’s resolution 

of the Königsberg bridge problem, which laid the groundwork for this discipline. Since 

that seminal event, graphs have become indispensable tools across various fields, 

facilitating the modeling of networks, relationships, and interactions. Bondy and Murty 

offered an exhaustive treatment of graph theory [4], blending both foundational theories 

and practical applications, and their work continues to serve as a pivotal reference in the 

exploration and application of graph-theoretical concepts.  

 Spectral graph theory, a specialized branch within graph theory, investigates the 

attributes of graphs through the eigenvalues and eigenvectors of matrices associated with 

them, such as the adjacency matrix and Laplacian matrix [5]. This domain provides 

profound insights into the structural characteristics of graphs [12], including aspects such 

as connectivity, bipartiteness, and community structure. Fiedler’s seminal work on 
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algebraic connectivity [7] established a crucial link between spectral properties and graph 

connectivity and robustness. Chung provided a comprehensive analysis of the field, 

encompassing a wide array of theoretical results and their applications [6]. Brouwer and 

Haemers delved into the intricate relationship between graph structures and their spectral 

properties [5], while Godsil and Royle integrated spectral methods with broader algebraic 

techniques [8], offering a panoramic view of graph spectral methods. Horn and Johnson 

laid the mathematical foundations essential for the comprehension of spectral graph theory 

[11], whereas Hogben addressed significant combinatorial issues [10] related to spectral 

properties.  

 Fuzzy graph theory 𝐺 = (𝜎, 𝜇)  extends conventional graph theory by 

incorporating the notion of fuzzy sets [24], a concept introduced by Zadeh, which allows 

for degrees of membership for vertices and edges. This framework is particularly 

advantageous for modeling scenarios characterized by uncertainty and imprecision. 

Rosenfeld was a trailblazer in this area, establishing the fundamental definitions and 

operations for fuzzy graphs [17]. Bhattacharya further refined this theoretical framework 

[3], probing into structural properties and operations. Mordeson and Nair synthesized 

various theories and applications, rendering their work an invaluable resource for 

researchers [13]. Narayanan and Mathew extended the concept of graph energy into the 

fuzzy domain [14], thereby connecting fuzzy graph theory with spectral properties. Gutman 

and Zhou examined the energy associated with the Laplacian matrix of a graph [9], paving 

the way for future research endeavors. Jiang explored how traditional spectral methods 

[12] could be adapted to fuzzy contexts, thereby bridging these two fields and illuminating 

the potential for further interdisciplinary exploration and innovation.  

 Recent studies in fuzzy graph theory have explored domination sets in vague 

graphs [23], vertex connectivity [2], and interval-valued fuzzy graph properties [15]. 

Complex Pythagorean fuzzy graphs [21] and neutrosophic graphs [19] have extended these 

models, while vague graphs aid in medical diagnosis [18]. Research on picture fuzzy graph 

energy [20] and signless Laplacian energy [16] has advanced spectral analysis, with 

isomorphism studies further refining structural insights [22].  

 Spectral fuzzy graph theory amalgamates the principles of spectral graph theory 

and fuzzy graph theory by scrutinizing the spectral properties of fuzzy graphs. This hybrid 

framework facilitates the analysis of complex systems marked by uncertainty and intricate 

structural features. By merging the strengths of both spectral and fuzzy graph theories, this 

approach offers novel insights and applications, especially in domains where uncertainty 

is a significant factor.  

 This paper aims to elucidate the properties of spectral fuzzy graphs by 

synthesizing concepts from spectral graph theory and fuzzy graph theory, aspiring to 

furnish fuzzy graphs' structural and spectral characteristics. The research focuses on the 

impact of fuzziness in vertices and edges on the spectral properties of fuzzy graphs.  

 The paper is organized as follows: Section 2 expounds upon foundational 

concepts and background information. In Section 3, theoretical constructs related to the 

properties of spectral fuzzy graphs are explored, supplemented by illustrative examples. 

Section 4 concludes the paper with a summary of the findings.  

 

2. Preliminaries 

Definition 2.1. [13] A fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) is a triple consisting of a non-empty set 
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𝑉 together with a pair of functions 𝜎: 𝑉 ⟶ [0,1] is a fuzzy vertex set and 𝜇: 𝑉 × 𝑉 ⟶
[0,1] is a fuzzy edge set such that 𝜇𝑖𝑗 ≤ 𝜎𝑖 ∧ 𝜎𝑗 for all 𝑖, 𝑗 ∈ 𝑉.  

  

Definition 2.2. [14] The adjacency matrix 𝐴 of a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇) is an 𝑛 × 𝑛 

matrix defined as 𝐴 = [𝑎𝑖𝑗] where 𝑎𝑖𝑗 = 𝜇𝑖𝑗. The eigenvalues are denoted by 𝜆𝑖: 𝜆1 ≥

𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑛 of 𝐴.  

  

Definition 2.3. [14] Let 𝐺 = (𝑉, 𝜎, 𝜇) be a fuzzy graph with 𝑛 vertices. The Laplacian 

matrix 𝐿 of 𝐺 is defined as, 

 𝐿 = [𝑙𝑖𝑗]𝑛×𝑛 = {

𝑑𝑖       if  𝑣𝑖 = 𝑣𝑗

−𝜇𝑖𝑗       if  (𝑣𝑖, 𝑣𝑗) ∈ 𝜇

0      Otherwise

 

 Also, 𝐿 = 𝐷 − 𝐴, where 𝐷 denotes the diagonal degree matrix 𝑑𝑖 in 𝐺.  

  

Definition 2.4. [1] For a square matrix 𝑀, the multiset of eigenvalues of 𝑀 is called the 

spectrum of 𝑀 and is denoted by 𝛤(𝐺) = {𝜆1
(𝑚1)

, 𝜆2
(𝑚2)

, … , 𝜆𝑝

(𝑚𝑝)
} where each 𝜆𝑖  is a 

distinct eigenvalue of 𝑀 with multiplicity 𝑚𝑖, forall  𝑖 = 1,2,… , 𝑝.  

  

Definition 2.5. [14] Let 𝐺  be a fuzzy graph and 𝐴  be its adjacency matrix. The 

eigenvalues of 𝐴 are the eigenvalues of 𝐺. The adjacency eigenvalues, along with their 

algebraic multiplicities, collectively constitute the fuzzy spectrum 𝛤(𝐺).  

  

Definition 2.6. [8] The spectral radius 𝜌(𝐺) of a fuzzy graph 𝐺 with an adjacency matrix 

𝐴  is the maximum absolute value of the eigenvalues of 𝐴 . It is given by, 𝜌(𝐺) =
max{|𝜆1|, |𝜆2|, … , |𝜆𝑛|} where 𝜆𝑖 are the spectrum of 𝐴.  

  

3. Main results 

Proposition 3.1. Let 𝐷  be a fuzzy diagonal matrix with entries 𝜆1, 𝜆2, … , 𝜆𝑛 . The 

eigenvalues of 𝐷 are given by 𝜆1, 𝜆2, … , 𝜆𝑛, and if 𝐷 is diagonalizable, then eigenvalues 

are distinct.  

Proof: The eigenvalues of a diagonal matrix are the entries on its diagonal. For the fuzzy 

diagonal matrix 𝐷, the characteristic polynomial is formed by det(𝐷 − 𝜆𝐼) = 0, where 𝐼 

is the identity matrix. Since 𝐷 − 𝜆𝐼 is also diagonal, its determinant is the product of the 

diagonal elements 𝜆𝑖 − 𝜆 for 𝑖 = 1,2,… , 𝑛. Therefore,  

 det(𝐷 − 𝜆𝐼) = ∏𝑛
𝑖=1 (𝜆𝑖 − 𝜆) = 0. 

The solutions 𝜆 are exactly the diagonal elements 𝜆1, 𝜆2, … , 𝜆𝑛, which are the eigenvalues 

of 𝐷. 

If 𝐷  is fuzzy diagonalizable, the fuzzy eigenvalues must be distinct. 

Diagonalizability implies that the matrix can be decomposed into a diagonal form using a 

fuzzy unitary matrix. If the eigenvalues are not distinct, Jordan blocks arises in the 

decomposition, violating diagonalizability. Thus, 𝐷 is diagonalizable if and only if the 

eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 are distinct.  
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Proposition 3.2. A fuzzy unitary matrix 𝑈 satisfies 𝑈𝑈−1 = 𝐼, where 𝑈−1 is the inverse 

of 𝑈, with both 𝑈 and 𝑈−1 respecting the fuzzy membership function 𝜇.  

Proof: A matrix 𝑈 is unitary if 𝑈∗𝑈 = 𝐼, where 𝑈∗ is the conjugate transpose and 𝐼 is 

the identity. In the fuzzy case, entries of 𝑈 are associated with fuzzy membership values 

𝜇𝑖𝑗 ∈ [0,1], reflecting the degree of membership. The inverse matrix 𝑈−1 must satisfy the 

same fuzzy membership constraints as 𝑈. Hence, 𝑈𝑈−1 = 𝐼 holds in the fuzzy context, 

ensuring the preservation of the unitary property, with the product yielding the identity 

matrix while respecting fuzziness.  

  

Lemma 3.3. Let 𝐴 be a fuzzy matrix. There exists a fuzzy unitary matrix 𝑈 such that 𝐴 =
𝑈𝑇𝑈−1, where 𝑇 is a fuzzy upper triangular matrix.  

Proof: The result follows from Schur decomposition theorem [5]. For any fuzzy matrix 𝐴, 

there exists a fuzzy unitary matrix 𝑈 such that the decomposition  

 𝐴 = 𝑈𝑇𝑈−1 

holds, where 𝑇 is an upper triangular matrix with fuzzy eigenvalues along its diagonal. 

This decomposition is obtained by unitary transformations on 𝐴, preserving the fuzzy 

membership functions associated with the matrix elements. Since every matrix consists of 

fuzzy membership values, it can be decomposed into an upper triangular form using unitary 

transformations. The membership function of each element remains intact, ensuring that 

the fuzziness of 𝐴 and 𝑈 does not affect the triangular structure of 𝑇 , and the fuzzy 

eigenvalues are preserved along the diagonal of 𝑇.  

 

Lemma 3.4. If a fuzzy matrix 𝐴 has distinct fuzzy eigenvalues, then 𝐴 is diagonalizable 

by a fuzzy unitary matrix.  

Proof: The distinctness of the fuzzy eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 implies that there exist 𝑛 

linearly independent fuzzy eigenvectors corresponding to these eigenvalues. The set of 

these eigenvectors spans the entire space to construct a fuzzy unitary matrix 𝑈 such that  

 𝐴 = 𝑈𝐷𝑈−1, 
where 𝐷  is a diagonal matrix with the distinct fuzzy eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛  on its 

diagonal. Since the eigenvalues are distinct, there are no Jordan blocks in the Jordan 

canonical form of 𝐴, and the matrix is diagonalizable. This diagonalization ensures that 

the fuzzy structure of the matrix is preserved while transforming 𝐴 into its diagonal form.  

 

Proposition 3.5. If a fuzzy matrix 𝐴 possesses repeated fuzzy eigenvalues, then 𝐴 is non- 

diagonalizable by a fuzzy unitary matrix.  

Proof: When a fuzzy matrix 𝐴  has repeated fuzzy eigenvalues, the eigenspaces 

corresponding to these eigenvalues doesnot possess linearly independent fuzzy 

eigenvectors to form a complete basis. In such cases, the Jordan canonical form of 𝐴 

contains non-trivial Jordan blocks, which prevent the matrix from being diagonalized. The 

presence of such repeated fuzzy eigenvalues implies that 𝐴 can only be transformed into 

a block upper triangular matrix. Thus, 𝐴 can be expressed as  

 𝐴 = 𝑈𝑇𝑈−1, 
where 𝑇  is a block triangular matrix, and 𝑈 is a fuzzy unitary matrix. The lack of a 

sufficient number of linearly independent eigenvectors due to the repeated fuzzy 

eigenvalues leads to this restriction, preventing the diagonalization of 𝐴 and forcing a 

block triangular form.  
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Example 1. Consider a fuzzy graph 𝐺  as shown in Fig. 3.1, which has repeated 

eigenvalues but still no self-loops.  

 
Figure 3.1: Fuzzy Graph 𝐺 with 𝜇12 = 𝜇13 = 𝜇23 = 0.8  

 Now,  

 𝐴 = [

0 0.8 0.8
0.8 0 0.8
0.8 0.8 0

] 

The eigenvalues of this matrix are: 𝜆 = {1.6,−0.8,−0.8}. Here,the repeated eigenvalues 

are 𝜆2 and 𝜆3. As per the proposition, this matrix is non- diagonalizable by a fuzzy unitary 

matrix due to repeated eigenvalues. But 𝐴 can be triangularized. There exists a fuzzy 

unitary matrix 𝑈  such that 𝐴 = 𝑈𝑇𝑈−1  where 𝑇  is a block upper triangular matrix 

(because of the repeated eigenvalues). In this case:  

 𝑇 = [

1.6 ∗ ∗
0 −0.8 ∗
0 0 −0.8

] 

 

Theorem 3.6. Fuzzy Spectral Theorem: Let 𝐴  be an 𝑛 × 𝑛  fuzzy matrix with fuzzy 

entries, and let 𝜇 ∈ [0,1] be a fuzzy membership function. Then, there exists a fuzzy 

unitary matrix 𝑈 and a fuzzy diagonal matrix 𝐷 such that  

 𝐴 = 𝑈𝐷𝑈−1 

if and only if 𝐴 is fuzzy diagonalizable, and the fuzzy eigenvalues of 𝐴 are distinct.  

Proof: Necessary Part: Assume 𝐴 = 𝑈𝐷𝑈−1, where 𝑈 is a fuzzy unitary matrix, and 𝐷 

is a fuzzy diagonal matrix. The decomposition 𝐴 = 𝑈𝐷𝑈−1  indicates that 𝐴  is 

diagonalizable in the fuzzy sense. Since 𝑈 is fuzzy unitary, its inverse 𝑈−1 also exists 

and is fuzzy unitary. The matrix 𝐷 being diagonal, contains the fuzzy eigenvalues of 𝐴, 

and these eigenvalues must be distinct. 

Diagonalizability via a fuzzy unitary matrix implies no Jordan blocks, which arise 

only with repeated eigenvalues. If 𝐴 had repeated fuzzy eigenvalues, 𝐷 would contain 

off-diagonal blocks in its Jordan form, contradicting diagonalizability. Therefore, distinct 

fuzzy eigenvalues are necessary for the fuzzy diagonalization of 𝐴. 

Sufficient Part: Conversely, assume that 𝐴  is fuzzy diagonalizable and its fuzzy 
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eigenvalues are distinct. By Schur’s theorem, for any matrix 𝐴, there exists a unitary matrix 

𝑉 such that  

 𝐴 = 𝑉𝑇𝑉−1, 
where 𝑇 is an upper triangular matrix. In the fuzzy context, 𝑉 becomes fuzzy unitary and 

𝑇 is a fuzzy upper triangular matrix. Since the eigenvalues are distinct, 𝑇 must have zero 

off-diagonal elements, as non-zero entries indicates Jordan blocks, contradicting the 

distinctness of the fuzzy eigenvalues. Thus, 𝑇  is diagonal and 𝑇 = 𝐷 , where 𝐷  is a 

diagonal matrix with distinct fuzzy eigenvalues. 

Therefore,  

 𝐴 = 𝑉𝐷𝑉−1. 
Since 𝐷  is diagonal and 𝑉  is fuzzy unitary, 𝐴 is diagonalizable by the fuzzy unitary 

matrix 𝑉. Let 𝑈 = 𝑉. Thus,  

 𝐴 = 𝑈𝐷𝑈−1, 
where 𝑈 is fuzzy unitary and 𝐷 contains the distinct fuzzy eigenvalues of 𝐴. 

Thus, 𝐴  is diagonalizable by a fuzzy unitary matrix if and only if the fuzzy 

eigenvalues of 𝐴  are distinct, ensuring both diagonalizability and the distinctness of 

eigenvalues.  

 

Example 2. Consider a fuzzy graph 𝐺 as shown in Fig. 3.2 with 𝜎1 = 𝜎2 = 𝜎3 = 1 and 

𝜇12 = 0.6, 𝜇23 = 0.5, 𝜇13 = 0.3.  

 
 

Figure 3.2: Fuzzy Graph 𝐺 with no self-loops  

 The Adjacency matrix is given by  

 𝐴 = [
0 0.6 0.3
0.6 0 0.5
0.3 0.5 0

] 

The eigenvalues of 𝐴 are 𝜆 = {0.94,−0.29,−0.65}.  

From the Fuzzy Spectral Theorem, since 𝐴  has distinct eigenvalues, it is 

diagonalizable. There exists a fuzzy unitary matrix 𝑈 such that 𝐴 = 𝑈𝐷𝑈−1 where 𝐷 is 

given by,  

 𝐷 = [
0.94 0 0
0 −0.29 0
0 0 −0.65

] 

 

Since all the eigenvalues are distinct, this matrix is diagonalizable using a fuzzy unitary 

matrix.  

  

Proposition 3.7. For any simple, undirected fuzzy graph 𝐺, the adjacency spectrum 𝐴(𝐺) 

consists of real numbers.  



 Novel Spectral Conditions for Diagonalizability and Connectivity in Spectral Fuzzy 

Graph Theory 

 

53 

 

Proof: Consider a simple undirected fuzzy graph 𝐺 = (𝜎, 𝜇). The adjacency matrix 𝐴(𝐺) 

is an 𝑛 × 𝑛  matrix (where 𝑛 = |𝑉| ) with entries 𝐴𝑖𝑗  corresponding to the edge 

membership values 𝜇𝑖𝑗. 

Since 𝐺 is undirected, the membership function satisfies 𝜇𝑖𝑗 = 𝜇𝑗𝑖 for all 𝑖, 𝑗 ∈

𝑉, which implies that 𝐴(𝐺) is symmetric, i.e., 𝐴𝑖𝑗 = 𝐴𝑗𝑖. According to linear algebra, the 

eigenvalues of any real symmetric matrix are guaranteed to be real. Therefore, the 

adjacency matrix 𝐴(𝐺) has real eigenvalues due to its symmetry. 

More specifically, there exists an orthogonal matrix 𝑃 such that:  

 𝐴(𝐺) = 𝑃𝐷𝑃𝑇 , 
where 𝐷 is a diagonal matrix containing the eigenvalues of 𝐴(𝐺). Since 𝑃 is orthogonal 

(𝑃𝑇 = 𝑃−1), this diagonalization shows that all eigenvalues of 𝐴(𝐺) must be real. 

Hence, the adjacency spectrum of the fuzzy graph 𝐺  consists entirely of real 

numbers.  

 

Theorem 3.8. For a fuzzy graph 𝐺 with 𝑛 vertices, the following properties hold:   

    1.  ∑𝑛
𝑖=1 𝜆𝑖 = 0,  

    2.  ∑𝑛
𝑖=1 𝜆𝑖

2 ≤ ∑𝑛
𝑖=1 deg(𝑣𝑖),  

    3.  If 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑛, then 𝜇𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗.  

Proof: Let 𝐺 = (𝜎, 𝜇) be a fuzzy graph with vertex set 𝜎 and edge set 𝜇, where 𝜇: 𝜎 ×
𝜎 → [0,1] is the fuzzy membership function representing the strength of the connection 

between any two vertices 𝑖 and 𝑗. The adjacency matrix 𝐴(𝐺) = [𝑎𝑖𝑗] of the graph 𝐺 has 

entries 𝑎𝑖𝑗 = 𝜇𝑖𝑗, the fuzzy membership value between vertices 𝑖 and 𝑗. The matrix 𝐴(𝐺) 

is symmetric, meaning 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all 𝑖, 𝑗. 

The eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 of 𝐴(𝐺), which form the adjacency spectrum of 𝐺, 

satisfy the following conditions: 

Part i) The sum of the eigenvalues of any matrix equals its trace, which is the sum of its 

diagonal elements. Since 𝐺 is a simple graph without self-loops, all diagonal entries 𝑎𝑖𝑖 =
0. Therefore, the trace of 𝐴(𝐺) is zero:  

 Tr(𝐴(𝐺)) = ∑𝑛
𝑖=1 𝑎𝑖𝑖 = 0. 

Thus, the sum of the eigenvalues is:  

 ∑𝑛
𝑖=1 𝜆𝑖 = 0. 

Part ii) The sum of the squares of the eigenvalues is equal to the Frobenius norm of the 

adjacency matrix. The Frobenius norm is the square root of the sum of the squares of the 

matrix entries:  

 ∥ 𝐴(𝐺) ∥𝐹
2= ∑𝑖,𝑗 𝑎𝑖𝑗

2 . 

In a fuzzy graph, the degree of a vertex 𝑣𝑖 is given by:  

 deg(𝑣𝑖) = ∑𝑛
𝑗=1 𝜇𝑖𝑗 = ∑𝑛

𝑗=1 𝑎𝑖𝑗 . 

Hence, the total degree sum is:  

 ∑𝑛
𝑖=1 deg(𝑣𝑖) = ∑𝑛

𝑖=1 ∑𝑛
𝑗=1 𝑎𝑖𝑗 . 

Since 𝑎𝑖𝑗
2 ≤ 𝑎𝑖𝑗 for all 𝑎𝑖𝑗 ∈ [0,1], it follows that:  

 ∑𝑛
𝑖=1 𝜆𝑖

2 =∥ 𝐴(𝐺) ∥𝐹
2= ∑𝑖,𝑗 𝑎𝑖𝑗

2 ≤ ∑𝑛
𝑖=1 deg(𝑣𝑖). 
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Part iii) If all eigenvalues of 𝐴(𝐺) are equal, say 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑛 = 𝜆, then the matrix 

𝐴(𝐺) must be a scalar multiple of the identity matrix:  

 𝐴(𝐺) = 𝜆𝐼, 
where 𝐼 is the identity matrix. This implies that 𝑎𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗, since the identity 

matrix has zero off-diagonal elements. Therefore, the fuzzy membership function 𝜇𝑖𝑗 must 

be zero for all 𝑖 ≠ 𝑗, indicating that there are no edges between distinct vertices in the 

fuzzy graph. 

Thus, the conditions of the theorem are satisfied.  

  

Example 3. Consider a fuzzy graph 𝐺 as shown in Fig. 3.3 with 𝜎1 = 𝜎2 = ⋯ = 𝜎5 = 1 

and 𝜇12 = 0.7, 𝜇23 = 0.6, 𝜇13 = 0.5, 𝜇24 = 0.4, 𝜇35 = 0.8, 𝜇45 = 0.3.  

   

 
Figure 3.3: Fuzzy Graph 𝐺  

 The eigenvalues are 𝜆 = {1.442,0.3355,0.0739,−0.7405,−1.1109} . These 

eigenvalues confirm that all are real numbers. 

The sum of the eigenvalues is: ∑5
𝑖=1 = 1.442 + 0.3355 + 0.0739 − 0.7405 −

1.1109 = 0, satisfying the first condition of the theorem. 

Now, 𝑑𝑒𝑔(𝑣1) = 1.2, 𝑑𝑒𝑔(𝑣2) = 1.7, 𝑑𝑒𝑔(𝑣3) = 1.9, 𝑑𝑒𝑔(𝑣4) =
0.7,   𝑑𝑒𝑔(𝑣5) = 1.1.  

The total degree sum is: ∑5
𝑖=1 𝑑𝑒𝑔(𝑣𝑖) = 6.6 and the sum of the squares of the 

eigenvalues is: ∑5
𝑖=1 𝜆𝑖

2 = 3.98. Thus, the sum of the squares of the eigenvalues is less 

than the total degree sum. 

Since the eigenvalues are distinct, third condition does not apply for this example 

and holds only for null graphs.  

  

Lemma 3.9. A fuzzy graph 𝐺 with 𝜗𝑛 = 0 as the smallest eigenvalue of the Laplacian 

matrix 𝐿(𝐺) always possesses non-negative eigenvalues.  

Proof: The Laplacian matrix 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺)  is symmetric because both the 

diagonal matrix 𝐷(𝐺) and the adjacency matrix 𝐴(𝐺) are symmetric, with 𝜇𝑖𝑗 = 𝜇𝑗𝑖 . 

Therefore, the eigenvalues of 𝐿(𝐺) are real. 

To prove that the eigenvalues are non-negative, consider the Rayleigh quotient for 

𝐿(𝐺):  

 𝜗 =
𝑢𝑇𝐿𝑢

𝑢𝑇𝑢
, 

where 𝑢 is any non-zero vector. Expanding 𝑢𝑇𝐿𝑢, we obtain:  

 𝑢𝑇𝐿𝑢 = 𝑢𝑇𝐷𝑢 − 𝑢𝑇𝐴𝑢, 
which simplifies to:  

 𝑢𝑇𝐿𝑢 = ∑𝑛
𝑖=1 𝐷𝑖𝑖𝑢𝑖

2 − ∑𝑖,𝑗 𝜇𝑖𝑗𝑢𝑖𝑢𝑗. 
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Substituting 𝐷𝑖𝑖 = ∑𝑗 𝜇𝑖𝑗, we get:  

 𝑢𝑇𝐿𝑢 = ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝜇𝑖𝑗𝑢𝑖
2 − ∑𝑖,𝑗 𝜇𝑖𝑗𝑢𝑖𝑢𝑗, 

Equivalently:  

 𝑢𝑇𝐿𝑢 =
1

2
∑𝑛

𝑖=1 ∑𝑛
𝑗=1 𝜇𝑖𝑗(𝑢𝑖 − 𝑢𝑗)

2. 

Since 𝜇𝑖𝑗 ≥ 0 and (𝑢𝑖 − 𝑢𝑗)
2 ≥ 0, we have 𝑢𝑇𝐿𝑢 ≥ 0, and thus 𝜗 ≥ 0. This shows that 

the eigenvalues of 𝐿(𝐺) are non-negative. 

To show that 𝜗𝑛 = 0, consider the all-ones vector 1 = (1,1, … ,1)𝑇. Then, 𝐿(𝐺) ⋅
1 = (𝐷(𝐺) − 𝐴(𝐺)) ⋅ 1 = 𝐷(𝐺) ⋅ 1 − 𝐴(𝐺) ⋅ 1 . Both 𝐷(𝐺) ⋅ 1  and 𝐴(𝐺) ⋅ 1  yield the 

same result (the row sums of 𝐴(𝐺)), so we have 𝐿(𝐺) ⋅ 1 = 0. This shows that 𝜗𝑛 = 0, 

confirming the result.  

 

Lemma 3.10. The null space of any Laplacian matrix 𝐿(𝐺) has dimension 1 if and only 

if the fuzzy graph 𝐺 is connected.  

Proof: Necessary Condition: If 𝐺 is connected, then for any non-zero vector 𝑥 in the 

null space of 𝐿(𝐺), we have 𝐿(𝐺) ⋅ 𝑥 = 0. On Expanding 𝑥𝑇𝐿(𝐺)𝑥,  

 𝑥𝑇𝐿(𝐺)𝑥 =
1

2
∑𝑛

𝑖=1 ∑𝑛
𝑗=1 𝜇𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

2 = 0. 

Since 𝜇𝑖𝑗 ≥ 0 and (𝑥𝑖 − 𝑥𝑗)
2 ≥ 0, equality holds only if 𝑥𝑖 = 𝑥𝑗 for all 𝑖, 𝑗. Therefore, 

𝑥  is proportional to the all-ones vector, and the null space of 𝐿(𝐺) is spanned by 1, 

implying its dimension is 1. 

Sufficient Condition: If 𝐺 is disconnected, 𝐿(𝐺) can be permuted into a block diagonal 

matrix, where each block corresponds to a connected component of 𝐺. Each block has its 

own Laplacian matrix with a zero eigenvalue corresponding to the all-ones vector of that 

component. Thus, the dimension of the null space is greater than 1 if 𝐺 is disconnected. 

Therefore, if the null space has dimension 1, 𝐺 must be connected.  

 

Proposition 3.11. The second smallest eigenvalue 𝜗𝑛−1 of the Laplacian matrix 𝐿(𝐺) is 

positive if and only if the fuzzy graph 𝐺 is connected.  

Proof: If 𝐺 is connected, the null space of 𝐿(𝐺) is spanned only by the all-ones vector, 

which corresponds to 𝜗𝑛 = 0. The second smallest eigenvalue 𝜗𝑛−1  must be positive 

because there is no other independent eigenvector corresponding to the eigenvalue 0. 

Conversely, assume 𝜗𝑛−1 > 0, but 𝐺 is disconnected. In this case, 𝐿(𝐺) must 

have at least two 0 eigenvalues, corresponding to each connected component of 𝐺, which 

contradicts the assumption that 𝜗𝑛−1 > 0 . Therefore, 𝐺  is connected if and only if 

𝜗𝑛−1 > 0.  

 

Theorem 3.12. A fuzzy graph 𝐺 = (𝜎, 𝜇) is connected if and only if 𝜗𝑛−1 > 0.  

Proof: Part (i): If 𝐺 is connected, then for any two vertices 𝜎𝑖 and 𝜎𝑗, there is a path 

between them. The Laplacian matrix 𝐿(𝐺) has a smallest eigenvalue 𝜗𝑛 = 0, with the 

corresponding eigenvector being the all-ones vector. The null space is spanned only by 1, 

and therefore, 𝜗𝑛−1 > 0. 

Part (ii): If 𝐺 is disconnected, the Laplacian matrix can be permuted into a block diagonal 
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matrix, with each block corresponding to a connected component. The null space of each 

block has a dimension corresponding to the number of connected components, implying 

that 𝜗𝑛−1 = 0. Thus, if 𝜗𝑛−1 > 0, 𝐺 must be connected.  

  

Example 4. Consider a fuzzy graph 𝐺 with five vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, where 𝜎1 =
𝜎2 = 𝜎3 = 𝜎4 = 𝜎5 = 1, and the fuzzy membership values are given as: 𝜇12 =
0.8, 𝜇13 = 0.7, 𝜇23 = 0.6, 𝜇34 = 0.5, 𝜇45 = 0.4.  

   
Figure 3.4: Fuzzy Graph G forming 𝐿(𝐺)  

 The corresponding Laplacian matrix 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺)  is computed as 

follows:  

 𝐿(𝐺) =

[
 
 
 
 
1.5 −0.8 −0.7 0 0
−0.8 1.4 −0.6 −0.5 0
−0.7 −0.6 1.8 −0.5 0
0 −0.5 −0.5 0.9 −0.4
0 0 0 −0.4 0.4 ]

 
 
 
 

 

The eigenvalues of the Laplacian matrix are 𝜗 = {0,0.432,1.101,1.667,2.4} . These 

eigenvalues are non-negative, confirming the lemma. 

The second smallest eigenvalue is 𝜗𝑛−1 = 0.432, which is positive, confirming 

that the fuzzy graph 𝐺 is connected, as stated in the theorem. 

Thus, the graph satisfies the condition that 𝜗𝑛−1 > 0, indicating connectivity.  

  

Lemma 3.13. If 𝐴 is a positive semi-definite matrix, there exists a matrix 𝐵 such that 

𝐴 = 𝐵𝑇𝐵.  

Proof: Let 𝐴 ∈ ℝ𝑛×𝑛 be a real symmetric positive semi-definite matrix. By definition, for 

any vector 𝑥 ∈ ℝ𝑛, it holds that  

 𝑥𝑇𝐴𝑥 ≥ 0. 
Since 𝐴  is real and symmetric, the Fuzzy Spectral Theorem implies that 𝐴  is 

diagonalizable. Specifically, an orthogonal matrix 𝑄 ∈ ℝ𝑛×𝑛 exists such that  

 𝐴 = 𝑄𝐷𝑄𝑇 , 
where 𝐷 is a diagonal matrix whose entries are the eigenvalues of 𝐴. Since 𝐴 is positive 

semi-definite, all its eigenvalues are non-negative. Let the eigenvalues of 𝐴 be denoted 

𝜆1, 𝜆2, … , 𝜆𝑛, with 𝜆𝑖 ≥ 0 for each 𝑖. 
Each eigenvalue 𝜆𝑖  can be expressed as the square of a non-negative number. 

Define  

 𝜎𝑖 = √𝜆𝑖, 

for each 𝑖 = 1,2,… , 𝑛 , such that 𝜎𝑖 ≥ 0  and 𝜎𝑖
2 = 𝜆𝑖 . A diagonal matrix Σ  can be 

constructed as:  

 Σ = diag(𝜎1, 𝜎2, … , 𝜎𝑛), 
so that Σ2 = 𝐷. 
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Now, define 𝐵 as 𝐵 = Σ𝑄𝑇. It follows that  

 𝐵𝑇𝐵 = (𝑄Σ)𝑇(𝑄Σ) = Σ𝑇𝑄𝑇𝑄Σ. 
Since 𝑄 is orthogonal, 𝑄𝑇𝑄 = 𝐼, the identity matrix, leading to  

 𝐵𝑇𝐵 = Σ𝑇Σ = Σ2. 
By construction, Σ2 = 𝐷, so  

 𝐵𝑇𝐵 = 𝐷. 
Thus,  

 𝐴 = 𝑄𝐷𝑄𝑇 = (𝑄Σ)(𝑄Σ)𝑇 = 𝐵𝑇𝐵. 
Hence, 𝐴 can be factored as 𝐴 = 𝐵𝑇𝐵, where 𝐵 = Σ𝑄𝑇, and Σ contains the square roots 

of the eigenvalues of 𝐴.  

 

Theorem 3.14. If 𝑀 is a symmetric fuzzy matrix, all its eigenvalues are real.  

Proof: Consider an eigenvector 𝑣 associated with the eigenvalue 𝜆 of 𝑀. The quadratic 

form related to 𝑀 is given by 𝑄(𝑣) = 𝑣𝑇𝑀𝑣. Since 𝑀 is symmetric, meaning 𝑀 = 𝑀𝑇, 

it holds that  

 𝑄(𝑣) = ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑣𝑖𝜇𝑖𝑗𝑣𝑗, 

where 𝜇𝑖𝑗 = 𝜇𝑗𝑖 is real for all 𝑖 and 𝑗. Since 𝑣 is an eigenvector corresponding to 𝜆, the 

eigenvalue is expressed as  

 𝜆 =
𝑄(𝑣)

𝑣𝑇𝑣
. 

This implies that 𝑀 is diagonalizable by an orthogonal matrix. An orthogonal matrix 𝑄 

and a diagonal matrix 𝐷 exist such that 𝑀 = 𝑄𝐷𝑄𝑇, where the diagonal elements of 𝐷 

are the eigenvalues of 𝑀 and the columns of 𝑄 are the corresponding eigenvectors. 

To confirm that the eigenvalues are real, consider any eigenvalue 𝜆 of 𝑀 with a 

corresponding eigenvector 𝑣. Then,  

 𝑀𝑣 = 𝜆𝑣    and    𝑣𝑇𝑀𝑣 = 𝜆𝑣𝑇𝑣. 
Since 𝑀 is symmetric, 𝑣𝑇𝑀𝑣 is a real number, and 𝑣𝑇𝑣, the norm of 𝑣 squared, is also 

real. Therefore, 𝜆 must be real, as it is the ratio of two real numbers:  

 𝜆 =
𝑣𝑇𝑀𝑣

𝑣𝑇𝑣
. 

 

  

Corollary 1. If 𝑀 is a symmetric fuzzy matrix, the eigenvectors corresponding to distinct 

eigenvalues of 𝑀 are orthogonal.  

Proof: Let 𝑣1  and 𝑣2  be eigenvectors of 𝑀 corresponding to distinct eigenvalues 𝜆1 

and 𝜆2 , respectively. Since 𝑀  is symmetric, meaning 𝑀 = 𝑀𝑇 , consider the inner 

product:  

 𝑣1
𝑇𝑀𝑣2 = 𝜆2𝑣1

𝑇𝑣2    and    𝑣2
𝑇𝑀𝑣1 = 𝜆1𝑣2

𝑇𝑣1. 
Taking the transpose of the second equation and using the fact that 𝑀 is symmetric yields:  

 𝑣2
𝑇𝑀𝑇𝑣1 = 𝜆2𝑣2

𝑇𝑣1    and    𝑣2
𝑇𝑀𝑣1 = 𝜆2𝑣2

𝑇𝑣1. 
Equating this with the earlier equation gives:  

 𝜆2𝑣2
𝑇𝑣1 = 𝜆1𝑣2

𝑇𝑣1. 
Since 𝜆1 and 𝜆2 are distinct, this equation holds only if 𝑣1

𝑇𝑣2 = 0, meaning that 𝑣1 and 

𝑣2 are orthogonal.  
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Example 5. Consider the following symmetric fuzzy matrix 𝑀 ∈ ℝ3×3:  

 𝑀 = [
0 0.5 0.3
0.5 0 0.4
0.3 0.4 0

]. 

Since 𝑀 is symmetric, its eigenvalues will be real. 

To find the eigenvalues, solve the characteristic equation det(𝑀 − 𝜆𝐼) = 0. The 

eigenvalues are:  

 𝜆1 = 0.883,    𝜆2 = −0.656,    𝜆3 = −0.227. 
Next, compute the eigenvectors corresponding to these eigenvalues:  

 𝑣1 = [
0.707
0.577
0.409

],    𝑣2 = [
−0.816
0
0.577

],    𝑣3 = [
0.064
−0.707
0.704

]. 

The inner products of these eigenvectors are:  

 𝑣1
𝑇𝑣2 = 0,    𝑣1

𝑇𝑣3 = 0,    𝑣2
𝑇𝑣3 = 0. 

Since the inner products are zero, the eigenvectors are orthogonal, confirming the corollary.  

  

4. Conclusion 

The results established provide a profound extension of spectral graph theory to the fuzzy 

domain, revealing key properties of fuzzy matrices and their spectra. The interplay between 

fuzzy diagonalizability, unitary transformations, and the structure of eigenvalues are 

highlighted. The nature of eigenvalues in symmetric fuzzy matrices are also explored and 

conditions for orthogonality and connectivity are solidified paving the way for deeper 

exploration of fuzzy spectral properties in complex networks.  
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