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ABSTRACT 
 

The graph product 𝐺 ⊙𝐻 defines a combination of two graphs into a new graph, with a 

set of vertices and edges derived from the original graphs, providing a structured 

representation of relationships. This paper discusses graph products using lattice graphs ( 

𝔏-graphs), with a particular focus on strong and modular products. We studied 𝔏-graph 

products, focusing on their main features and how they can be compared with each other. 

We used theoretical analysis and mathematical proofs to show their structures and real-

world importance. Our findings indicate that strong products support efficient 

communication across network levels, whereas modular products optimize shared 

pathways, reducing congestion and energy consumption in IoT networks. These findings 

improve our understanding of complicated interactions in IoT systems, leading to improved 

network design and performance. 
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1. Introduction 

Leonhard Euler invented graph theory in 1736 in order to address the Königsberg Bridge 

problem. Since the development of graph theory, many scholars have used this concept to 

solve real problems in a variety of fields. An L-graph, commonly known as a line graph, is 

a specific graph in graph theory. The line graph is formed by connecting each edge of the 

original graph to a vertex. Zadeh introduced the concept of a fuzzy subset and used the set 

type to reflect imprecise natural occurrences. Several researchers (including Kuzmin and 

Bezdek) have since examined numerous applications for this notion. 

Later, Bhattacharya added some remarks about fuzzy graphs. Mordeson and Peng 

[1] introduced some operations on fuzzy graphs. Meenakshi and Shivangi [2,3] used cubic 

fuzzy graphs to explain the modular product and presented their work on graph products 

utilizing correlation and regression coefficients. Radha and Arumugam [4] studied the 

strong product of two fuzzy graphs, analyzing structural properties and modeling 
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possibilities. Ramachandran and Thomas [5] explained isomorphisms on 𝔏-fuzzy graphs 

and defined their counterpart in the framework of equivalence relations. Raisi Sarbizhan 

and Zahedi [6,7] studied the kronecker product of RL graph and the maximal product L-

graph automata, their applications and automata theory. Vijaya [8] examined the regularity 

of the modular product of two fuzzy graphs. Talebi et al. [9] studied the concept of 

isomorphism in vague graphs, establishing necessary and sufficient conditions for two 

vague graphs. Rashmanlou et al. [10,11] explored an extensive study on vague graphs, 

analysing their properties and the product operations on interval-valued fuzzy graphs, 

focusing on degree-based properties. Ali et al. [12] investigated vertex connectivity in 

fuzzy graphs and applied their findings to human trafficking networks. Meenakshi et al. 

[13] utilized a neutrosophic approach for network optimization and presented decision-

making scenarios under uncertainty. Meenakshi and Dhanushiya [14,15] studied the graph 

operation concept using intuitionistic fuzzy graph and its vertex order colouring. 

This study seeks to establish a graph based on a residuated lattice known as the 𝔏-

graph. An 𝔏 graph typically refers to a graph associated with a lattice, where the graph 

vertices are elements, and the edges represent relationships between these elements. The 

current work aims to explore the innovative graph products of two 𝔏-graphs, illustrating 

one of its applications. These graph products combine the vertices and edges of the original 

graphs in various ways, preserving their structural and modular properties. The graph 

product isomorphism has been investigated using the residuated lattice framework, which 

takes into account an appropriate natural relationship between lattice operations. We 

investigated the isomorphism of strong and modular product 𝔏 - graphs for IoT 

applications. The applications of IoT in the 𝔏-graph products are evidence of the significant 

influence technology will have on how industries develop in the future. As technology 

advances, we can expect even more innovative applications in these fields. The concept of 

a 𝔏-graph establishes links between edges and their connectivity patterns, which aids in 

creating the final graph products. Some examples and theorems are also presented to study 

the graph products of two 𝔏-graphs. 

The manuscript is structured as follows: In section 2 we have discussed the 

fundamental concepts of the 𝔏-graph. Section 3 presents the strong product of 𝔏-graph 

related to some theorems and illustrations. In section 4, we have studied the modular 

product of 𝔏-graph. Section 5 presents the applications of IoT-based industry and irrigation 

systems. In Section 6, we wrap up the manuscript by identifying possible future research 

topics, outlining the consequences of the main findings, and summarizing them. 

 

2. Preliminaries 

This section discusses the fundamental concepts of the 𝔏-graph. 

 

Definition 2.1. [7] Let 𝔏 = (𝔏,∨,∧,⊙,→ ,0,1) be a residuated lattice if it satisfies the 

following conditions: 

i) 𝔏 = (𝔏,∨,∧ ,0,1) is a bounded lattice with lowest element 0 and largest element 1 . 

ii) 𝔏 = (𝔏,⊙ ,0,1) is a commutative monoid (i.e., ⊙ is commutative, associative, and 

𝔠 ⊙ 1 = 𝔠 holds), 

iii) 𝔠 ⊙ 𝔡 ≤ 𝔢 if and only if 𝔠 ≤ 𝔡 → 𝔢 holds (adjointness condition). 
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Proposition 2.2. [7] Let 𝔏 = (𝔏,∨,∧,⊙,→ ,0,1) be a residuated lattice then it holds 

following conditions: 
(𝑅1)1 ⋆ 𝔠 = 𝔠 where ⋆ 𝜖{∧,⊙,→}, 
(𝑅2)𝔠 ⊙ 0 = 0, 1′ = 0, 0′ = 1, 
(𝑅3)𝔠 ⊙ 𝔡 ≤ 1, 𝔠 ∧ 𝑦 ≤ 𝔠, 𝔡, and 𝔡 ≤ (𝔠 → 𝔡), 
(𝑅4)𝔠 ≤ 𝔡 implies 𝔠 ⋆ 𝔢 ≤ 𝔡 ⋆ 𝔢, where ⋆∈ {∧,∨,⊙} 
(𝑅5)𝔢⊙ (𝔠 ∧ 𝔡) ≤ (𝔢 ⊙ 𝔠) ∧ (𝔢 ⊙ 𝔡), 
(𝑅6)𝔠 ⊙ (𝔡 ∨ 𝔢) = (𝔠 ⊙ 𝔡) ∨ (𝔠 ⊙ 𝔢), 
(𝑅7)(𝔠 ∨ 𝔡) → 𝔢 = (𝔠 → 𝔡) ∧ (𝔠 → 𝔢). 
 

Definition 2.3. [7] If 𝔊 = (𝜗⋆, 𝜏⋆) is called an 𝔏 - graph on 𝔊⋆ = (𝕍, 𝔼) if 𝜗⋆: 𝕍 → 𝔏 

and 𝜏⋆: 𝔼 → 𝔏 are function with 𝜏⋆(𝑘𝔩) ≤ 𝜗⋆(𝑘) ⊙ 𝜗⋆(𝔩) for every (𝑘𝔩)𝜖𝔼. 

 

Definition 2.4. [7] Let 𝔊1 = (𝜗1
⋆, 𝜏1

⋆) and 𝔊2 = (𝜗2
⋆, 𝜏2

⋆) be two 𝔏-graphs on 𝔊1
⋆ =

(𝕍1, 𝔼1) and 𝔊2
⋆ = (𝕍2, 𝔼2) respectively, and 𝑐𝜖𝔏 ∖ {1} 

Then 𝔊1 and 𝔊2 are isomorphic with threshold 𝑐, which is denoted by 𝔊1⊙𝔊2 only if 

there exist a bijection 𝔟: 𝕍1 → 𝕍2 such that the following conditions hold for all 𝑢, 𝑣 ∈
𝕍1, 

(i) 𝑢𝑣𝜖𝔼1 if and only if 𝔟(𝑢)𝔟(𝑣)𝜖𝔼2, 

(ii) 𝜗1
⋆(𝑢) > 𝑐 if and only if 𝜗2

⋆(𝔟(𝑢)) > 𝑐, 
(iii) 𝜏1

⋆(𝑢𝑣) > 𝑐 if and only if 𝜏2
⋆(𝔟(𝑢)𝔟(𝑣)) 

(iv) A function 𝔟 is considered isomorphic if and only if 𝔟 is isomorphic with threshold 𝑐 

for every 𝑐 ∈ 𝔏 ∖ {1}. 
 

3. The strong product of two 𝕷-graphs 

Throughout this study, let 𝔏 denote a residuated lattice, and let 𝑆 represent an 𝔏-graph, 

denoted as 𝑆 = (𝜗1
⋆, 𝜏1

⋆), on 𝑆⋆ = (𝕍1, 𝔼1), where 𝜗1
⋆ and 𝜏1

⋆ are operations defined on 𝑆⋆. 
Similarly, let 𝑃 denote another 𝔏-graph, expressed as 𝑃 = (𝜗2

⋆, 𝜏2
⋆), on 𝑃⋆ = (𝕍2, 𝔼2). 

 

Definition 3.1.  Let 𝔊1 and 𝔊2 denote two 𝔏 - graphs. Then the strong products of two 𝔏-

graphs 𝔊1 and 𝔊2 is defined by 𝔊1⊙𝔊2 = ((𝜗
⋆, 𝜏⋆)) and (𝔊1⊙𝔊2)

⋆ = (𝕍, 𝔼), where 

(i) 𝕍 = 𝕍1⊙𝕍2. 
(ii) 𝔼 = 𝔼1⊙𝔼2. 

(iii) 𝜗⋆(𝑠𝑖, 𝑠𝑗) = 𝜗1
⋆(𝑠𝑖) ∧ 𝜗2

⋆(𝑠𝑗) for all (𝑠𝑖, 𝑠𝑗)𝜖𝕍. 

(iv) 𝔼 = (𝑠𝑖, 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ ) ∣ 𝑠𝑖 = 𝑠𝑚
′ , 𝑠𝑗𝑠𝑛

′ ∈ 𝔼2 or 𝑠𝑗 = 𝑠𝑛
′ , 𝑠𝑖𝑠𝑚

′ 𝜖𝔼1 or 𝑠𝑖𝑠𝑚
′ 𝜖𝔼1 and 

𝑠𝑗𝑠𝑛
′ 𝜖𝔼2.

(v) 𝜏⋆(𝑠𝑖, 𝑠𝑗, 𝑠𝑚
′ , 𝑠𝑛

′ ) =

{
 
 
 

 
 
 
𝜗1
⋆(𝑠𝑖)⊙ 𝜏2

⋆(𝑠𝑗, 𝑠𝑛
′ ),  if (𝑠𝑖) = (𝑠𝑚

′ ) and 

(𝑠𝑗, 𝑠𝑛
′ ) ∈ 𝔼2,

𝜗1
⋆(𝑠𝑗)⊙ 𝜏1

⋆(𝑠𝑖, 𝑠𝑚
′ ),  if (𝑠𝑗) = (𝑠𝑛

′ ) and 

(𝑠𝑖, 𝑠𝑚
′ ) ∈ 𝔼1

𝜏1
⋆(𝑠𝑖, 𝑠𝑚

′ ) ⊙ 𝜏2
⋆(𝑠𝑗, 𝑠𝑛

′ ),  if (𝑠𝑖, 𝑠𝑚
′ ) ∈ 𝔼1 and 

𝑆(𝑠𝑗, 𝑠𝑛
′ ) ∈ 𝔼2
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Theorem 3.2. Let 𝑆 and 𝑃 be two 𝔏 - graphs. Then 

(i) 𝑆 ⊙ 𝑃 is an 𝔏 - graphs, 

(ii) If (𝑠, 𝑠′) is a vertex of 𝑆 ⊙ 𝑃, then 𝑑𝑆⊙𝑃(𝑠, 𝑠
′) = 𝑑𝑆(𝑠) + 𝑑𝑃(𝑠′) 

(iii) |𝔼| = |𝔼1| × |𝕍2| + |𝕍1| × |𝔼2| 
Proof: 

(i) According to the definition of 𝔏-graph, this is proved by showing that 

𝜏⋆ ((𝑠𝑖, 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ )) ≤ 𝜗⋆(𝑠𝑖, 𝑠𝑗)⊙ 𝜗⋆(𝑠𝑚
′ , 𝑠𝑛

′ ). 

We know that 𝜏⋆ ((𝑠𝑖, 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ )) has three cases. 

Case 1. If 𝑠𝑖 = 𝑠𝑚
′ , (𝑠𝑗, 𝑠𝑛

′ ) ∈ 𝔼2 then 

𝜏⋆ ((𝑠𝑖 , 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ )) = 𝜗1
⋆(𝑠𝑖) ⊙ 𝜏2

⋆(𝑠𝑗 , 𝑠𝑛
′ ) by definition of 𝜏⋆

 = (𝜗1
⋆(𝑠𝑖) ∧ 𝜗1

⋆(𝑠𝑚
′ )) ⊙ 𝜏2

⋆(𝑠𝑗𝑠𝑛
′ )

 ≤ (𝜗1
⋆(𝑠𝑖) ∧ 𝜗1

⋆(𝑠𝑚
′ )) ⊙ (𝜗2

⋆(𝑠𝑗) ∧ (𝜗2
⋆(𝑠𝑛

′ )) by definition of 𝔏 −  graph ,

 ≤ (𝜗1
⋆(𝑠𝑖) ∧ (𝜗1

⋆(𝑠𝑗) ⊙ (𝜗2
⋆(𝑠𝑚

′ ) ∧ (𝜗2
⋆(𝑠𝑛

′ ) by (𝑅3) proposition (2.2)

 = (𝜗1
⋆(𝑠𝑖) ∧ (𝜗1

⋆(𝑠𝑗) ⊙ (𝜗2
⋆(𝑠𝑚

′ ) ∧ (𝜗2
⋆(𝑠𝑛

′ ) by definition of 𝜗⋆

𝜏⋆ ((𝑠𝑖 , 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ )) = 𝜗⋆(𝑠𝑖 , 𝑠𝑗) ⊙ 𝜗⋆(𝑠𝑚
′ , 𝑠𝑛

′ )

 

case 2. If 𝑠𝑗 = 𝑠𝑛
′ , (𝑠𝑖, 𝑠𝑚

′ ) ∈ 𝔼2 

𝜏⋆ ((𝑠𝑖, 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ )) = 𝜗1
⋆(𝑠𝑗)⊙ 𝜏2

⋆(𝑠𝑖, 𝑠𝑚
′ ) by definition of 𝜏⋆ 

case 3. If 𝑠𝑖𝑠𝑚
′ 𝜖𝔼1, 𝑠𝑗𝑠𝑛

′ 𝜖𝔼2 

𝜏⋆ ((𝑠𝑖, 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ )) = 𝜏1
⋆((𝑠𝑖, 𝑠𝑗)⊙ 𝜏2

⋆(𝑠𝑚
′ , 𝑠𝑛

′ ))

𝜏⋆ ((𝑠𝑖, 𝑠𝑗)(𝑠𝑚
′ , 𝑠𝑛

′ )) = 𝜗⋆(𝑠𝑖, 𝑠𝑗)⊙ 𝜗⋆(𝑠𝑚
′ , 𝑠𝑛

′ )
 

The above results are obtained using the following cases, therefore, we can say that 𝑆 ⊙
𝑃 is an 𝔏-graphs. 

(ii) Each vertex (𝑠, 𝑠′) in the 𝔏-graphs 𝑆 ⊙ 𝑃 is connected to the vertex (𝑠𝑖, 𝑠𝑗
′), where 

𝑠𝑖 = 𝑠 and 𝑠′ is adjacent to 𝑠𝑗
′, or 𝑠′ = 𝑠𝑗

′ and 𝑠𝑖 is adjacent to 𝑠, or both vertices (𝑠, 𝑠′) 

and (𝑠𝑖, 𝑠𝑗
′) are adjacent in the 𝔏-graph. In this context, 𝑠 represents the vertices adjacent 

to 𝑠𝑖 in the 𝔏-graph 𝑆, and 𝑠′ represents the vertices adjacent to 𝑠𝑗
′ in 𝔏-graph 𝑃. 

Therefore, the distance function 𝑑𝑆𝑃(𝑠, 𝑠
′) = 𝑑𝑆(𝑠) + 𝑑𝑃(𝑠

′). 

(iii) consider ℳ = {(𝑠, 𝑠𝑚
′ )(𝑠, 𝑠𝑛

′ ) ∣ 𝑠𝜖𝕍1, (𝑠𝑚
′ 𝑠𝑛

′ )𝜖𝔼2}, and ℛ = {(𝑠𝑖, 𝑠
′)(𝑠𝑗, 𝑠

′) ∣

𝑠′𝜖𝕍2, (𝑠𝑖, 𝑠𝑗)𝜖𝔼1}. As =ℳ ∪ℛ, |𝔼| = |ℳ| + |ℛ| = |𝔼1| × |𝕍2| + |𝕍1| × |𝔼2|. 

 

Theorem 3.3. Let 𝔊 and 𝔊′ be isomorphic 𝔏-graphs, and let ℋ and ℋ ′ be isomorphic 𝔏-

graphs. Then, the strong product of 𝔊⊙ℋ is isomorphic to 𝔊′⊙ℋ ′. 

Proof: Given isomorphic 𝔏-graphs 𝔊 and 𝔊′, there exists an isomorphism 𝔥: 𝕍(𝔊) →
𝕍(𝔊′), such that for any two vertices (𝑢, 𝑣) in 𝕍(𝔊), the edge (𝑢, 𝑣) is in 𝔼(𝔊) if and 

only if the edge 𝔥(𝑢), 𝔥(𝑣) is in 𝔼(𝔊′). Similarly, for isomorphic 𝔏-graphs ℋ and ℋ ′, 

there exists an isomorphism 𝔥: 𝕍(ℋ) → 𝕍(ℋ ′), such that for any two vertices (𝑥, 𝑦) in 

𝕍(ℋ), the edge (𝑥, 𝑦) is in 𝔼(ℋ) if and only if the edge (𝔥(𝔠), 𝔥(𝔡)) is in 𝔼(ℋ′). 
Now, consider the strong product of 𝔊⊙ℋ and 𝔊′⊙ℋ ′. The vertex set of 𝔊⊙ℋ is 

𝕍(𝔊⊙ℋ) = 𝕍(𝔊)⊙𝕍(ℋ), and the vertex set of 𝔊′⊙ℋ ′ is 𝕍(𝔊′⊙ℋ′) =
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𝕍(𝔊′) ⊙ 𝕍(ℋ ′). Define the function 𝔥: 𝕍(𝔊⊙ℋ) → 𝕍(𝔊′⊙ℋ ′) as follows: 

𝔥(𝑢, 𝑥) = (𝔥(𝑢), 𝔥(𝔠)) This function 𝔥 is an isomorphism because it preserves adjacency: 

For any two vertices ((𝑢1, 𝔠1)) and ((𝑢2, 𝔠2)) in 𝕍(𝔊⊙ℋ), ((𝑢1, 𝔠1)) is adjacent to 

((𝑢2, 𝔠2)) if and only if either (𝑢1) = (𝑢2) or (𝔠1) = (𝔠2). 

Similarly, 𝔥(𝑢1, 𝔠1) is adjacent to 𝔥(𝑢2, 𝔠2) if and only if 𝔥(𝑢1) = 𝔥(𝑢2) or 𝔥(𝔠1) = 𝔥(𝔠2), 
which preserves adjacency. It is a bijection, meaning 𝔥 is a one-to-one and onto function. 

Therefore, the strong product (𝔊⊙ℋ) is isomorphic to (𝔊′⊙ℋ′) by the isomorphism 

𝔥. 

 

Example 3.4. Suppose 𝔏 = (𝔏,∨,∧,⊙,→ ,0,1) and two 𝔏 - graphs 𝑆 and 𝑃, where 

 
𝕍1 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}, 𝔼1 = {𝑠1𝑠2, 𝑠1𝑠3, 𝑠2𝑠4, 𝑠3𝑠4}, 𝜏1(𝑠𝑖, 𝑠𝑗) = 𝜗1

⋆(𝑠𝑖) ⊙ 𝜗1
⋆(𝑠𝑗), for every 

(𝑠𝑖𝑠𝑗)𝜖𝔼1, 𝜗1
⋆(𝑠1) = 0.8, 𝜗1

⋆(𝑠2) = 0.6, 𝜗1
⋆(𝑠3) = 0.7, 𝜗1

⋆(𝑠4) = 0.5, 

𝜏1
⋆(𝑠1𝑠2) = 0.4, 𝜏1

⋆(𝑠1𝑠3) = 0.5, 𝜏1
⋆(𝑠2𝑠4) = 0.1, 𝜏1

⋆(𝑠3𝑠4) = 0.2, 

𝕍2 = {𝑠1
′ , 𝑠2

′ , 𝑠3
′ , 𝑠4

′}, 𝔼2 = {𝑠1
′𝑠2
′ , 𝑠2

′ 𝑠4
′ , 𝑠1

′𝑠3
′ , 𝑠3

′𝑠4
′ }, 

𝜏2
⋆(𝑠𝑚

′ 𝑠𝑛
′ ) = (𝜗2

⋆(𝑠𝑚
′ ) ∧ 𝜗2

⋆(𝑠𝑛
′ ))⊙ (𝜗2

⋆(𝑠𝑚
′ ) ∧ 𝜗2

⋆(𝑠𝑛
′ )),for every (𝑠𝑚

′ 𝑠𝑛
′ )𝜖𝔼2, 𝜗2

⋆(𝑠1
′) =

0.5, 𝜗2
⋆(𝑠2

′ ) = 0.9, 𝜗2
⋆(𝑠3

′ ) = 0.7, 𝜗2
(
𝑠4
′) = 0.6, 𝜏2

⋆(𝑠1
′𝑠2
′ ) = 0.4, 𝜏2

⋆(𝑠1
′𝑠3
′ ) =

0.2, 𝜏2
⋆(𝑠3

′𝑠4
′) = 0.3, 𝜏2

⋆(𝑠2
′𝑠4
′) = 0.5. Then 𝑆 ⊙ 𝑃 is the strong product of 𝑆 and 𝑃 (figure 

2) where, 𝕍 = {(𝑠𝑖 , 𝑠𝑗
′) ∣ 1 ≤ 𝑖, 𝑗 ≤ 4}, 𝔼 =

{{(𝑠𝑖, 𝑠1
′)(𝑠𝑖, 𝑠2

′ ), (𝑠𝑖𝑠1
′)(𝑠𝑖𝑠3

′ ), (𝑠𝑖𝑠2
′ )(𝑠𝑖𝑠4

′), (𝑠𝑖𝑠4
′)(𝑠𝑖𝑠3

′ ), 

(𝑠1, 𝑠𝑗
′)(𝑠3, 𝑠𝑗

′), (𝑠1, 𝑠𝑗
′)(𝑠2, 𝑠𝑗

′), (𝑠2, 𝑠𝑗
′)(𝑠4, 𝑠𝑗

′),(𝑠4, 𝑠𝑗
′)(𝑠3, 𝑠𝑗

′) ∣ 1 ≤ 𝑖, 𝑗 ≤ 4}, 

{(𝑠2, 𝑠2
′ )(𝑠4, 𝑠1

′), (𝑠2, 𝑠4
′)(𝑠4, 𝑠3

′ ), (𝑠2, 𝑠3
′ )(𝑠4𝑠4

′),(𝑠4, 𝑠1
′)(𝑠3𝑠2

′ ), (𝑠4, 𝑠2
′ )(𝑠3𝑠4

′), 
(𝑠4, 𝑠4

′)(𝑠3𝑠3
′ ),(𝑠1, 𝑠1

′)(𝑠2𝑠2
′ ), (𝑠1, 𝑠1

′)(𝑠3, 𝑠3
′ ), (𝑠1, 𝑠2

′ )(𝑠2, 𝑠1
′), 

(𝑠1, 𝑠2
′ )(𝑠2, 𝑠4

′), (𝑠1, 𝑠4
′)(𝑠2, 𝑠2

′ ), (𝑠1, 𝑠4
′)(𝑠3, 𝑠3

′ ), (𝑠1, 𝑠4
′)(𝑠2, 𝑠3

′ ), 
(𝑠1, 𝑠3

′ )(𝑠3, 𝑠1
′), (𝑠1, 𝑠3

′ )(𝑠2, 𝑠4
′), (𝑠2, 𝑠1

′)(𝑠4, 𝑠2
′ ), (𝑠2, 𝑠2

′ )(𝑠4, 𝑠4
′)}} 

𝜗⋆(𝑠1, 𝑠1
′) = 0.5, 𝜗⋆(𝑠1, 𝑠2

′ ) = 0.8, 𝜗⋆(𝑠1, 𝑠4
′) = 0.6, 𝜗⋆(𝑠1, 𝑠3

′ ) = 0.7, 

𝜗⋆(𝑠2, 𝑠1
′) = 0.5, 𝜗⋆(𝑠2, 𝑠2

′ ) = 0.6, 𝜗⋆(𝑠2, 𝑠4
′) = 0.6, 𝜗⋆(𝑠2, 𝑠3

′ ) = 0.6, 

𝜗⋆(𝑠4, 𝑠1
′) = 0.5, 𝜗⋆(𝑠4, 𝑠2

′ ) = 0.5, 𝜗⋆(𝑠4, 𝑠4
′) = 0.5, 𝜗⋆(𝑠4, 𝑠3

′ ) = 0.5, 

𝜗⋆(𝑠3, 𝑠1
′) = 0.5, 𝜗⋆(𝑠3, 𝑠2

′ ) = 0.7, 𝜗⋆(𝑠3, 𝑠4
′) = 0.6, 𝜗⋆(𝑠3, 𝑠3

′ ) = 0.7. 

 

Table 1: Membership values 𝜏⋆ 

𝜏⋆((𝑠1𝑠1
′)(𝑠1𝑠2

′ )) = 0.2 𝜏⋆((𝑠1𝑠3
′ )(𝑠2𝑠3

′ )) = 0.1 𝜏⋆((𝑠1𝑠1
′)(𝑠1𝑠3

′ )) = 0 

𝜏⋆((𝑠1𝑠2
′ )(𝑠1𝑠4

′)) = 0.3 𝜏⋆((𝑠2𝑠1
′)(𝑠4𝑠1

′)) = 0.3 𝜏⋆((𝑠1𝑠4
′)(𝑠1𝑠3

′ )) = 0.1 

𝜏⋆((𝑠1𝑠1
′)(𝑠3𝑠1

′)) = 0 𝜏⋆((𝑠2𝑠1
′)(𝑠2𝑠3

′ )) = 0 𝜏⋆((𝑠1𝑠1
′)(𝑠2𝑠1

′)) = 0 
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𝜏⋆((𝑠1𝑠1
′)(𝑠2𝑠2

′ )) = 0 𝜏⋆((𝑠2𝑠2
′ )(𝑠4𝑠4

′)) = 0 𝜏⋆((𝑠1𝑠1
′)(𝑠3𝑠3

′ )) = 0 

𝜏⋆((𝑠1𝑠2
′ )(𝑠2𝑠1

′)) = 0 𝜏⋆((𝑠2𝑠2
′ )(𝑠4𝑠1

′)) = 0 𝜏⋆((𝑠1𝑠2
′ )(𝑠2𝑠2

′ )) = 0.3 

𝜏⋆((𝑠1𝑠2
′ )(𝑠3𝑠2

′ )) = 0.4 𝜏⋆((𝑠2𝑠4
′)(𝑠4𝑠4

′)) = 0 𝜏⋆((𝑠1𝑠2
′ )(𝑠2𝑠4

′)) = 0 

𝜏⋆((𝑠1𝑠4
′)(𝑠2𝑠2

′ )) = 0 𝜏⋆((𝑠2𝑠3
′ )(𝑠4𝑠4

′)) = 0 𝜏⋆((𝑠1𝑠4
′)(𝑠3𝑠4

′)) = 0.1 

𝜏⋆((𝑠1𝑠4
′)(𝑠3𝑠3

′ )) = 0 𝜏⋆((𝑠4𝑠1
′)(𝑠3𝑠1

′)) = 0 𝜏⋆((𝑠1𝑠4
′)(𝑠2𝑠4

′)) = 0 

𝜏⋆((𝑠1𝑠4
′)(𝑠2𝑠3

′ )) = 0 𝜏⋆((𝑠4𝑠1
′)(𝑠4𝑠3

′ )) = 0 𝜏⋆((𝑠1𝑠3
′ )(𝑠3𝑠1

′)) = 0 

𝜏⋆((𝑠1𝑠3
′ )(𝑠2𝑠4

′)) = 0 𝜏⋆((𝑠4
′𝑠2
′ )(𝑠3𝑠2

′ )) = 0 𝜏⋆((𝑠1𝑠3
′ )(𝑠3𝑠3

′ )) = 0.2 

𝜏⋆((𝑠2𝑠1
′)(𝑠2𝑠2

′ )) = 0 𝜏⋆((𝑠4𝑠2
′ )(𝑠3𝑠4

′)) = 0 𝜏⋆((𝑠2𝑠4
′)(𝑠4𝑠3

′ )) = 0 

𝜏⋆((𝑠2𝑠1
′)(𝑠4𝑠2

′ )) = 0 𝜏⋆((𝑠4𝑠4
′)(𝑠3𝑠4

′)) = 0 𝜏⋆((𝑠2𝑠3
′ )(𝑠4𝑠3

′ )) = 0 

𝜏⋆((𝑠2𝑠2
′ )(𝑠4𝑠2

′ )) = 0 𝜏⋆((𝑠4𝑠4
′)(𝑠4𝑠3

′ )) = 0 𝜏⋆((𝑠4𝑠1
′)(𝑠4𝑠2

′ )) = 0 

𝜏⋆((𝑠2𝑠2
′ )(𝑠2𝑠4

′)) = 0.1 𝜏⋆((𝑠3𝑠1
′)(𝑠3𝑠3

′ )) = 0 𝜏⋆((𝑠4𝑠1
′)(𝑠3𝑠2

′ )) = 0 

𝜏⋆((𝑠2𝑠4
′)(𝑠2𝑠3

′ )) = 0 𝜏⋆((𝑠3𝑠4
′)(𝑠3𝑠3

′ )) = 0 𝜏⋆((𝑠4
′𝑠2
′ )(𝑠3𝑠1

′)) = 0 

𝜏⋆((𝑠4𝑠2
′ )(𝑠4𝑠4

′)) = 0 𝜏⋆((𝑠3𝑠1
′)(𝑠3𝑠2

′ )) = 0.1  

𝜏⋆((𝑠4𝑠4
′)(𝑠3𝑠3

′ )) = 0 𝜏⋆((𝑠3𝑠2
′ )(𝑠3𝑠4

′)) = 0.2  

 

 

 
Figure 1: The 𝔏 - Graphs 𝑆 and 𝑃 
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Figure 2: 𝑆 ⊙ 𝑃 strong product of two 𝔏 - Graphs 𝑆 and 𝑃 

 

Example 3.5. Suppose 𝔏 = (𝔏,∨,∧,⊙,→ ,0,1); then 𝑃 ⊙ 𝑆 be the isomorphic strong 

product of 𝑃 and 𝑆 (figure 3) where, 𝕍 = {(𝑠𝑗
′, 𝑠𝑖) ∣ 1 ≤ 𝑖, 𝑗 ≤ 4}, 

𝜗⋆(𝑠1
′ , 𝑠1) = 0.5, 𝜗

⋆(𝑠2
′ , 𝑠1) = 0.8, 𝜗

⋆(𝑠4
′ , 𝑠1) = 0.6, 𝜗

⋆(𝑠3
′ , 𝑠1) = 0.7, 

𝜗⋆(𝑠1
′ , 𝑠2) = 0.5, 𝜗

⋆(𝑠2
′ , 𝑠2) = 0.6, 𝜗

⋆(𝑠4
′ , 𝑠2) = 0.6, 𝜗

⋆(𝑠3
′ , 𝑠2) = 0.6, 

𝜗⋆(𝑠1
′ , 𝑠4) = 0.5, 𝜗

⋆(𝑠2
′ , 𝑠4) = 0.5, 𝜗

⋆(𝑠4
′ , 𝑠4) = 0.5, 𝜗

⋆(𝑠3
′ , 𝑠4) = 0.5, 

𝜗⋆(𝑠1
′ , 𝑠3) = 0.5, 𝜗

⋆(𝑠2
′ , 𝑠3) = 0.7, 𝜗

⋆(𝑠4
′ , 𝑠3) = 0.6, 𝜗

⋆(𝑠3
′ , 𝑠3) = 0.7. 

 

 
Figure 3: 𝑃⊙ 𝑆 isomorphic Strong product of two 𝔏 - Graphs 𝑃 and 𝑆 

 

4. The modular product of 𝕷-graphs 

In this section, we introduce the modular product using 𝔏-graph and its isomorphic graph. 

Let ℳ represent an 𝔏-graph ℳ = (𝜗1
⋆, 𝜏1

⋆) on ℳ⋆ = (𝕍1, 𝔼1), and let 𝒫 denote an 𝔏-

graph 𝒫 = (𝜗2
⋆, 𝜏2

⋆) on 𝒫⋆ = (𝕍2, 𝔼2). 
 

Definition 4.1.  Let ℳ and 𝒫 be two 𝔏-graphs. Then the modular product of two 𝔏-

graphs ℳ and 𝒫 is defined by ℳ⊠𝒫 = (𝜗⋆, 𝜏⋆) and (ℳ⊠𝒫)⋆ = (𝕍,𝔼), where 
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(i) 𝕍 = 𝕍1⊠𝕍2 

(ii) 𝔼 = 𝔼1⊠𝔼2 

(iii) 𝕍1⊠𝕍2 = (𝑡𝑖, 𝑡𝑚
′ ) 𝑡𝑖 ∈ 𝕍1, 𝑡𝑚

′ 𝜖𝕍2 

(iv) 𝜗⋆(𝑡𝑖, 𝑡𝑚
′ ) = 𝜗1

⋆(𝑡𝑖) ∧ 𝜗2
⋆(𝑡𝑚

′ ) for all (𝑡𝑖, 𝑡𝑚
′ )𝜖𝕍 

(v) 𝔼1⊠𝔼2 = (𝑡𝑖, 𝑡𝑚
′ )(𝑡𝑗, 𝑡𝑛

′ ), (𝑡𝑖 , 𝑡𝑗) ∈ 𝔼1, (𝑡𝑚
′ , 𝑡𝑛

′ )𝜖𝔼2 or (𝑡𝑖, 𝑡𝑗) ∉ 𝔼1, (𝑡𝑚
′ , 𝑡𝑛

′ ) ∉ 𝔼2 

(vi)𝜏⋆(𝑡𝑖, 𝑡𝑚
′ )(𝑡𝑗, 𝑡𝑛

′ )                                                                                        

= {
𝜏1
⋆(𝑡𝑖, 𝑡𝑗)

(𝜗1
⋆(𝑡𝑖) ∧ 𝜗1

⋆(𝑡𝑗))⊠ (𝜗2
⋆, 𝑡𝑛

⋆), if (𝑡𝑚
′ ) ∧ 𝑡𝑚

′ ) ∈ 𝜗2
⋆(𝑡𝑛

′ )) , if (𝑡𝑖, 𝑡𝑚
′ ) ∉ 𝔼1 and (𝑡𝑗, 𝑡𝑛

′ ) ∉ 𝔼2
 

 

Theorem 4.2. Let ℳ and 𝒫 be two 𝔏 - graphs. Then 

(i) ℳ⊠𝒫 is an 𝔏 - graph, 

(ii) If (𝑡, 𝑡′) is a vertex of ℳ𝒫, then 𝑑ℳ𝒫(𝑡, 𝑡
′) = 𝑑ℳ(𝑡) + 𝑑𝑝(𝑡′) 

(iii) |𝔼| = |𝔼1| × |𝕍2| + |𝕍1| × |𝔼2| 
Proof: 

(i) According to the definition of 𝔏-graph, this is proved by showing 

𝜏⋆ ((𝑡𝑖, 𝑡𝑚
′ )(𝑡𝑗, 𝑡𝑛

′ )) ≤ 𝜗⋆(𝑡𝑖, 𝑡𝑚
′ )⊠ 𝜗⋆(𝑡𝑗, 𝑡𝑛

′ ). We know that 𝜏⋆ ((𝑡𝑖 , 𝑡𝑚
′ )(𝑡𝑗, 𝑡𝑛

′ )) has 

two cases. 

 

Case 1. (𝑡𝑖, 𝑡𝑗) ∈ 𝔼1and(𝑡𝑚
′ , 𝑡𝑛

′ ) ∈ 𝔼2 then 

𝜏⋆ ((𝑡𝑖 , 𝑡𝑚
′ )(𝑡𝑗, 𝑡𝑛

′ )) = 𝜏1
⋆(𝑡𝑖, 𝑡𝑗) 𝜏2

⋆(𝑡𝑚
′ , 𝑡𝑛

′  by definition of 𝜏⋆

 = (𝜗1
⋆(𝑡𝑖) ∧ 𝜗1

⋆(𝑡𝑗)) ⊠ (𝜗2
⋆(𝑡𝑚

′ ) ∧ 𝜗2
⋆(𝑡𝑛

′ )) by definition of 𝔏 −  graph 

 ≤ (𝜗1
⋆(𝑡𝑖) ⊠ 𝜗2

⋆(𝑡𝑚
′ )) ∧ (𝜗1

⋆(𝑡𝑗) ⊠ 𝜗2
⋆(𝑡𝑛

′ ) by ( 𝑅5 ) proposition (2.2)

 ≤ (𝜗1
⋆(𝑡𝑖) ⊠ (𝜗1

⋆(𝑡𝑗) ⊠ 𝜗2
⋆(𝑡𝑛

′ ))) ∧ (𝜗2
⋆(𝑡𝑚

′ ) ⊠ (𝜗1
⋆(𝑡𝑗) ⊠ 𝜗2

⋆(𝑡𝑛
′ )))  by ( 𝑅5 ) proposition (2.2)

 ≤ (𝜗1
⋆(𝑡𝑖) ⊠ (𝜗1

⋆(𝑡𝑗) ∧ 𝜗2
⋆(𝑡𝑛

′ ))) ∧ (𝜗2
⋆(𝑡𝑚

′ ) ⊠ (𝜗1
⋆(𝑡𝑗) ∧ 𝜗2

⋆(𝑡𝑛
′ )))  by ( 𝑅3 ) proposition (2.2)

 ≤ (𝜗1
⋆(𝑡𝑖) ∧ 𝜗2

⋆(𝑡𝑚
′ )) ⊠ (𝜗1

⋆(𝑡𝑗) ∧ 𝜗2
⋆(𝑡𝑛

′ ))  by (𝑅5) proposition (2.2)

𝜏⋆ ((𝑡𝑖 , 𝑡𝑚
′ )(𝑡𝑗, 𝑡𝑛

′ )) ≤ 𝜗⋆(𝑡𝑖, 𝑡𝑚
′ ) ⊠ 𝜗⋆(𝑡𝑗 , 𝑡𝑛

′ )

 

 

case 2. (𝑡𝑖, 𝑡𝑗) ∉ 𝔼1 and (𝑡𝑚
′ , 𝑡𝑛

′ ) ∉ 𝔼2 Assume the first case. Hence, 

 

𝜏⋆ ((𝑡𝑖 , 𝑡𝑚
′ )(𝑡𝑗 , 𝑡𝑛

′ )) = (𝜗1
⋆(𝑡𝑖) ∧ 𝜗1

⋆(𝑡𝑗)) ⊠ (𝜗2
⋆(𝑡𝑚

′ ) ∧ 𝜗2
⋆(𝑡𝑛

′ ))  by definition of 𝜏⋆

 ≤ (𝜗1
⋆(𝑡𝑖) ⊠ 𝜗2

⋆(𝑡𝑚
′ )) ∧ (𝜗1

⋆(𝑡𝑗) ⊠ 𝜗2
⋆(𝑡𝑛

′ ))   by (R5) proposition (2.2) 

 ≤ (𝜗1
⋆(𝑡𝑖) ⊠ (𝜗1

⋆(𝑡𝑗) ⊠ 𝜗2
⋆(𝑡𝑛

′ ))) ∧ (𝜗2
⋆(𝑡𝑚

′ ) ⊠ (𝜗1
⋆(𝑡𝑗) ⊠ 𝜗2

⋆(𝑡𝑛
′ )))   

 ≤ ((𝜗1
⋆(𝑡𝑖) ∧ 𝜗2

⋆(𝑡𝑚
′ )) ⊠ (𝜗1

⋆(𝑡𝑗) ∧ 𝜗2
⋆(𝑡𝑛

′ )))   by (R5) proposition (2.2) 

𝜏⋆ ((𝑡𝑖 , 𝑡𝑚
′ )(𝑡𝑗 , 𝑡𝑛

′ )) ≤ 𝜗⋆(𝑡𝑖 , 𝑡𝑚
′ ) ⊠ 𝜗⋆(𝑡𝑗 , 𝑡𝑛

′ )  by definition of 𝜗⋆

 

Above results are obtained using the second case, therefore we can say that ℳ⊠𝒫 is an 

𝔏-graph. 
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(ii) Each vertex (𝑡, 𝑡′) of 𝔏-graph ℳ⊠𝒫 is connected to the vertex (𝑡𝑖, 𝑡
′) that 𝑡𝑖 

adjacent vertices of 𝑡′ in the 𝔏-graph ℳ and connected to the vertex (𝑡′, 𝑡𝑗) that 𝑡𝑗 are the 

adjacent vertices of 𝑡′ in the 𝔏-graph 𝒫. So, 𝑑ℳ𝒫(𝑡, 𝑡
′) = 𝑑ℳ(𝑡) + 𝑑𝒫(𝑡′). (iii) consider 

𝒬 = {(𝑡, 𝑡𝑚
′ )(𝑡, 𝑡𝑛

′ ) ∣ 𝑡 ∈ 𝕍1, 𝑡𝑚
′ 𝑡𝑛

′ ∈ 𝔼2}, and ℛ = {(𝑡𝑖, 𝑡
′)(𝑡𝑗, 𝑡

′) ∣ 𝑡′𝜖𝕍2, (𝑡𝑖 , 𝑡𝑗) ∈ 𝔼1}. 

As = 𝒬 ∪ℛ, |𝔼| = |𝒬| + |ℛ| = |𝔼1| × |𝕍2| + |𝕍1| × |𝔼2|. 
 

Example 4.3. Suppose 𝔏 = (ℒ,∨,∧,⊔,→ ,0,1) and two 𝔏 - graphs ℳ and 𝒫 where 

𝔤⊠ 𝔟 = {
𝔤 + 𝔟 − 1,  if 𝔤 + 𝔟 ≥ 1

0,  if 𝔤 + 𝔟 < 1

𝔤 → 𝔟 = {
1,  if 𝔟 − 𝔤 ≥ 0

1 − 𝔤 + 𝔟,  if 𝔟 − 𝔤 < 0

 

𝕍1 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}, 𝔼1 = {𝑡1𝑡2, 𝑡1𝑡3, 𝑡2𝑡4, 𝑡3𝑡4}, 𝜗1(𝑡𝑖, 𝑡𝑗) = 𝜗1
⋆(𝑡𝑖) ⊠ 𝜗1

⋆(𝑡𝑗), 

for every (𝑡𝑖𝑡𝑗) ∈ 𝔼1, 𝜗1
⋆(𝑡1) = 0.7, 𝜗1

⋆(𝑡2) = 0.8, 𝜗1
⋆(𝑡3) = 0.6, 𝜗1

⋆(𝑡4) = 0.5, 

𝜏1
⋆(𝑡1𝑡2) = 0.5, 𝜏1

⋆(𝑡1𝑡3) = 0.3, 𝜏1
⋆(𝑡2𝑡4) = 0.3, 𝜏1

⋆(𝑡3𝑡4) = 0.1, 𝜏1
⋆(𝑡3𝑡2) = 0.6, 

𝜏1
⋆(𝑡1𝑡4) = 0.4, 𝕍2 = {𝑡1

′ , 𝑡2
′ , 𝑡3

′ , 𝑡4
′ }, 𝔼2 = {𝑡1

′ 𝑡2
′ , 𝑡2

′ 𝑡3
′ , 𝑡1

′ 𝑡3
′ , 𝑡1

′ 𝑡4
′ }, 

𝜏2
⋆(𝑡𝑚

′ 𝑡𝑛
′ ) = (𝜗2

⋆(𝑡𝑚
′ ) ∨ 𝜗2

⋆(𝑡𝑛
′ )) ⊠ (𝜗2

⋆(𝑡𝑚
′ ) ∨ 𝜗2

⋆(𝑡𝑛
′ )), for every (𝑡𝑚

′ 𝑡𝑛
′ )𝜖𝔼2, 𝜗2

⋆(𝑡1
′) = 

0.8, 𝜗2
⋆(𝑡2

′ ) = 0.6, 𝜗2
⋆(𝑡3

′ ) = 0.6, 𝜗2
(
𝑡4) = 0.5, 𝜏2

⋆(𝑡1
′ 𝑡2
′ ) = 0.8, 𝜏2

⋆(𝑡2
′ 𝑡3
′ ) = 0.8, 𝜏2

⋆(𝑡1
′𝑡3
′ ) =

0.6, 𝜏2
⋆(𝑡1

′ 𝑡4
′ ) = 0.6, 𝜏2

⋆(𝑡3
′ 𝑡4
′ ) = 0.2. Then ℳ⊠𝒫 is the modular product of ℳ and 𝒫 

(figure 5) where, 𝕍 = (𝑡𝑖, 𝑡𝑗
′) ∣ 1 ≤ 𝔦, 𝔧 ≤ 4}, 𝔼 =

{(𝑡𝑖, 𝑡1
′(𝑡𝑖, 𝑡2

′ ), (𝑡𝑖𝑡1
′)(𝑡𝑖𝑡3

′ ), (𝑡𝑖𝑡2
′ )(𝑡𝑖𝑡3

′ ), (𝑡𝑖𝑡3
′ )(𝑡𝑖𝑡1) ∣ 1 ≤ 𝔦 ≤ 4}, 

𝜗⋆(𝑡1, 𝑡1
′) = 0.7, 𝜗⋆(𝑡2, 𝑡1

′) = 0.8, 𝜗⋆(𝑡3, 𝑡1
′) = 0.6, 𝜗⋆(𝑡4, 𝑡1

′) = 0.5, 𝜗⋆(𝑡1, 𝑡2
′ ) = 0.6, 

𝜗⋆(𝑡2, 𝑡2
′ ) = 0.6, 𝜗⋆(𝑡3, 𝑡2

′ ) = 0.6, 𝜗⋆(𝑡4, 𝑡2
′ ) = 0.5, 𝜗⋆(𝑡1, 𝑡3

′ ) = 0.6, 𝜗⋆(𝑡2, 𝑡3
′ ) = 0.6, 

𝜗⋆(𝑡3, 𝑡3
′ ) = 0.6, 𝜗⋆(𝑡4, 𝑡3

′ ) = 0.5, 𝜗⋆(𝑡1, 𝑡4
′ ) = 0.5, 𝜗⋆(𝑡2, 𝑡4

′ ) = 0.5, 𝜗⋆(𝑡4, 𝑡4
′ ) = 0.5, 

𝜗⋆(𝑡3, 𝑡4
′ ) = 0.5, 𝜏⋆(𝑡1𝑡1

′)(𝑡2𝑡2
′ ) = 0.3.  

 

 
Figure 4: The 𝔏 - Graphs ℳ and 𝒫 
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Figure 5: ℳ⊠𝒫 modular product of two ℒ - Graphs ℳ and 𝒫 

 

Example 4.4. Suppose 𝔏 = (𝔏,∨,∧, ∽,→ ,0,1); then 𝒫 ∽ℳ be the isomorphic modular 

product of 𝒫 and ℳ, where 𝕍 = {(𝑡𝑖, 𝑡𝑗
′) ∣ 1 ≤ 𝑖, 𝑗 ≤ 4}, 𝔼 =

{(𝑡1
′ 𝑡𝑖)(𝑡2

′ 𝑡𝑖), (𝑡1
′ 𝑡𝑖)(𝑡3

′ 𝑡𝑖), (𝑡2
′ 𝑡𝑖)(𝑡3

′ 𝑡𝑖), 
(𝑡3
′ 𝑡𝑖)(𝑡1

′ 𝑡𝑖) ∣ 1 ≤ 𝑖 ≤ 4}, 
𝜗⋆(𝑡1

′𝑡1) = 0.7, 𝜗
⋆(𝑡1

′𝑡2) = 0.8, 𝜗
⋆(𝑡1

′𝑡3) = 0.6, 𝜗
⋆(𝑡1

′ , 𝑡4) = 0.5, 𝜗
⋆(𝑡2

′ 𝑡1) = 0.6, 

𝜗⋆(𝑡2
′ 𝑡2) = 0.6, 𝜗

⋆(𝑡2
′ , 𝑡3) = 0.6, 𝜗

⋆(𝑡2
′ , 𝑡4) = 0.5, 𝜗

⋆(𝑡3
′ , 𝑡1) = 0.6, 𝜗

⋆(𝑡3
′ 𝑡2) = 0.6, 

𝜗⋆(𝑡3
′ 𝑡3) = 0.6, 𝜗

⋆(𝑡3
′ , 𝑡4) = 0.5, 𝜗

⋆(𝑡4
′ , 𝑡4) = 0.5, 

 

 

 
Figure 6: 𝒫⊠ℳ isomorphic modular product of two 𝔏 – Graphs ℳ and 𝒫 

 

5. Applications 
The Internet of Things is a field that has grown rapidly with millions of interconnected 

devices communicating with each other and central systems to perform several tasks. Such 

networks are usually hierarchical, where devices at the lowest level connect to gateways, 

which further communicate with central servers. Efficient communication is paramount in 

IoT networks to ensure timely data transfer without delay and power consumption, given 
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that most IoT devices are powered through limited sources of power. 𝔏 - Graphs, are very 

powerful in modeling hierarchical communication structures like this. It captures the 

ordered relationships between the devices, gateways, and servers and can capture the 

dependency and flow of communication between various levels of the network. 

Application of strong products to 𝔏-graphs will allow analyzing all possible routes of 

communication among devices, gateways, and servers, thus determining efficient pathways 

for the transfer of data, which ensures minimal communication delays and smooth running. 

Other than strong products, the modular product is used to study intersection nodes in the 

network where different devices or pathways share a point. These nodes typically are 

crucial intersection points within a network; an example includes the shared gateway and 

router. The optimization of shared pathways means the network has lesser congestion 

hence improving the data transfer rate and lowering the latency time. This strategy works 

well for networks carrying high volumes of traffic; an attribute most IoT networks are 

associated with. Energy efficiency is an important advantage of the use of such graph 

products, as most of the IoT devices are battery-based, and energy-efficient communication 

will be necessary for them. These strong and modular products will find the best route to 

minimize useless data transmission and processing, conserving energy on the network at 

large. 𝔏 - Graphs with strong and modular products, therefore, are an enormous power in 

terms of optimizing IoT communication. Such methods will be used to find efficient and 

reliable routes for easy communication. It helps with congestion at shared points, conserves 

energy, and supports the scalability of the network. As it undergoes IoT expansion, it will 

give networks enough reserve to remain efficient and robust enough to meet the demands 

of modern applications. 

 

5. Conclusion 

The study of graph products for 𝔏-graphs highlights their importance in understanding 

complex relationships inside graph networks. These basic features, as well as their 

isomorphisms, determine the theoretical and practical value of these products. Strong 

products enable hierarchical communication pathways, whereas modular devices use 

common paths to unblock and conserve energy. Integrating graph product operations with 

machine learning algorithms may enable increased predictive capabilities during IoT 

network optimization and anomaly identification. Further research on how such an 

operation scales and works computationally is needed to achieve scalability in such large-

scale IoT systems. 
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