
Journal of Physical Sciences, Vol. 12, 2008, 141-154 
 

141 

Circulant Triangular Fuzzy Number Matrices 
 

Monoranjan  Bhowmik1, Madhumangal Pal2 and Anita Pal3 
1Department of Mathematics, V.T.T. College, 

Midnapore – 721 101, INDIA. 
e-mail: monoranjan_bhowmik@rediffmail.com 

2Department of Applied Mathematics with Oceanology and Computer Programming 
Vidyasagar University, 

Midnapore – 721 102, INDIA. 
e-mail: mmpalvu@gmail.com 
3Department of Mathematics 

National Institute of Technology Durgapur 
Durgapur – 713209, West Bengal, India 

Email: anita.buie@gmail.com 
 

Received July 6, 2008; accepted November 21, 2008 
 
 

ABSTRACT 
 

In this paper, we present some operations on circulant triangular fuzzy numbers 
matrices (TFNMs). The first row of the circulant matrices play important role in this 
study. We also study some properties of determinant and adjoint of circulant 
TFNMs. Finally, we investigate the distance of generalized TFNMs by a systematic 
process. 
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1. Introduction 
In most of cases of our life, the data obtained for decision making are only 
approximate. In 1965, Zadeh [21] introduce the concept of fuzzy set theory to meet 
those problems. The fuzzyness can be represented by different ways. One of the 
most useful representation is membership function. Also, depending the nature and 
shape of the membership function the fuzzy number can be classified in different 
forms, such as triangular fuzzy number (TFNs), trapezoidal fuzzy number, etc. 
Several researchers present various results on TFNs. In 1985, Chen [4] gives the 
concept of generalized TFNs. A brief review of fuzzy matrices and their variants is 
given below. 
 The fuzzy matrices introduced first time by Thomason [20], and discussed about 
the convergence of powers of fuzzy matrix. Several authors presented a number of 
results on the convergence of power sequence of fuzzy matrices [7, 8, 10]. Ragab et 
al. [14] presented some properties on determinant and adjoint of square fuzzy 
matrix. Ragab et al. [15] presented some properties of the min-max composition of 
fuzzy matrices. Kim [9] presented some important results on determinant of a square 
fuzzy matrices. Two new operators and some applications of fuzzy matrices are 
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given in [16, 17, 18, 19]. Perhaps first time, Pal [11] introduced intuitionistic fuzzy 
determinant. Also, Pal et al. [12] introduced intuitionistic fuzzy matrices. Recently, 
Bhowmik and Pal [2, 3] introduced some results on intuitionistic fuzzy matrices, 
intuitionistic circulant fuzzy matrices and generalized intuitionistic fuzzy matrices. 
Pal and Shyamal [13] first time introduced triangular fuzzy matrices. 
       In Section 2 of this paper, we recall the definition of TFNs and some operations 
of TFNs. In Section 3, we recall the definition of triangular fuzzy number matrices 
(TFNMs) and some operations of TFNMs. In Section 4, we define the circulant 
TFNMs and some results of circulant TFNMs. Finally, we propose a systematic 
process to find the distance between general TFNMs. 
 
2. Triangular Fuzzy Number 
Sometimes it may happen that some data or numbers can not be specified precisely 
or accurately due to the error of the measuring technique or instruments, etc. 
Suppose, the height of a person is 160 cm. But, practically it is impossible to 
measure the height accurately; actually this height is about 160 cm; it is some more 
or less than 160 cm. Thus the height of that person can be written more precisely as 
(160 – α, 160, 160+β) where α and β are left and right spreads of 160. In general, 
this number can written as (a - α, a, a + β), where α and β are the left and right 
spreads of a respectively. These type of numbers are called triangular fuzzy numbers 
(TFNs) and alternately represented as (a, α, β). The mathematical definition of a 
TFN is given below. 
 
Definition 1. A triangular fuzzy number represented as ( )1, , :u

AA a a a µ= , where 
1, , ua a a  are all real values, Aµ  denotes the membership grade or height and 

[ ] 10,1 . , u
A a aµ ∈ are the left hand and right hand spreads of the mean value a  

respectively and membership grade Aµ  is defined as follows: 

   ( )
1

0

1

1

1

0

l

l

A

u
u

u

for x a a
a x for a a x a

a
x for x a

x a for a x m a
a

for x a a

µ

 ≤ −
 − − − < <

= =
 − − < < +

 ≥ +

 

       A TFN A  is said to be normalized if A 1µ =  and it can be represented as 

( ), ,l uA a a a= . 

  If 0 l ua a a≤ ≤ ≤ , then A  is called standardized fuzzy number. 
 Through out this paper we used normalized TFN. 
 
Note 1. A TFN is said to be symmetric if its both spreads are equal, i.e., if l ua a=  
and it is sometimes denoted by ( ), lA a a= . 

 Here we introduce the definition of arithmetic operations due to Dubois and 
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Prade [6] and Pal and Shyamal [13]. 
 Let ( ), ,l uA a a a=  and ( ), ,l uB b b b=  be two TFNs. 

1. Addition: ( ), ,l u uA B a b a b a b+ = + + + . 

2. Scalar multiplication: Let λ  be a scalar, then 
 ( ), , ,l uA a a aλ λ λ λ=  when 0λ ≥ . 

 ( )2
1, , ,uA a a aλ λ λ λ= − −  when 0λ ≤ . 

3. Subtraction: ( ), ,l u u lA B a b a b a b− = + − + . 

For two A and B , their addition, subtraction and scalar multiplication, i.e., 
A B+ , A B−  and Aλ are TFNs. But their product and inverse may not be 
TFNs. 

4. Multiplication: 
(a) When A 0≥  and ( )B 0 A 0, if a 0≥ ≥ ≥  

, , , , , ,l u l u l l u uAB a a a b b b ab ba ab ab ba= + + , 

(b) When ( )A 0 a 0≤ ≤  and B 0≥  

, , , , , ,l u l u l u u lAB a a a b b b a b ab ab a b ab= − − , 

(c) When A 0≤  and B 0≤  

, , , , , ,l u l u u u l uAB a a a b b b a b ab ab a b ab= − − − −  

       It can be shown that the shape of the membership function of AB  is not 
necessarily a triangular, but, if the spreads of A and B  are small compared to their 
mean values a  and b  then the shape of membership function is closed to a triangle. 
When spreads are not small compared with mean values, the formula can be 
changed to 
    , , , , , ,l u l u l l l l u u u ua a a b b b ab ba a b ab ab ba a b+ − + −  for A 0≥  and 

B 0≥ . 
 Throughout the paper we used previous definition. 
 Now, we define inverse of a TFN based on the definition of multiplication. 

5. Inverse: Inverse of a TFN , , , 0l uA a a a a= >  is defined as, 
11 2 1 2, , , ,l u u lA a a a a a a a a

−− − − −= . 

This is also an approximate value of 1A−  and it is valid only a 

neighbourhood of 1
a

. 

The division of A  by B  is given by 
1.A A B

B
−= . 

Since inverse and product both are approximate, the division is also an 
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approximate value.  
The formula definition of division is given below. 

6. Division: 1 2 1 2. , , . , ,l u u lA A B a a a b b b b b
B

− − − −= =  

   2 2, ,
u l l ua ab a b ab a b
b bb
+ +  

From the definition of multiplication of TFNs, the power of any TFN A  is 
defined in the following way. 

7. Exponentiation: [13] Using the definition of multiplication it can be shown 
that nA  is given by 
 1 1, , , ,

nn l u n n u n lA a a a a na a na a− −= − − , when n is negative. 

  1 1, ,n n l n ua na a na a− − , when n is positive. 

3.  Preliminaries and Definitions 
Here we introduce some definitions due to Pal and Shyamal [13]. 
 
Definition 2. [13] (Triangular fuzzy number matrix (TFNM)). A TFNM of order 
m n×  is defined as ( )ij m n

A a
×

= , where l u
ij ij ij ija a ,a ,a=  is the ijth element of ijA,a  

is the mean value of A  and l u
ij ija ,a  are the left and right spreads of ija  respectively. 

 Like classical matrices we define the following operations on TFNMs. Let 
( )ijA a=  and ( )ijB b=  be two TFNMs of same order. The following operations are 

defined in [13]: 
(i) ( )ij ijA B a b+ = +  

(ii) ( )ij ijA B a b− = −  

(iii) ( ). ij m p
A B c

×
=  [where ( ) ( ),ij ijm n n p

A a B b
× ×

= =  

 and 
1

.
n

ij ik kj
k

c a b
=

= ∑  for i = 1,2,…,m and j = 1,2,…,p.] 

(iv) 1 .k kA A A+ =  
(v) ( )jiA a′ =  (the transpose of A ) 

(vi) ( ). ijk A ka= , where k is a scalar. 

 
Definition 3. (Null TFNM). A TFNM is said to be a null TFNM if all its entries are 
zero, i.e., all elements are 0,0,0 . This matrix is denoted by O . 
 
Definition 4. (Unit TFNM). A square TFNM is said to be a unit TFNM if all 

0,1,0iia =  and 0,0,0 ,ija i j= ≠ , for all i, j. It is denoted by I . A n n×  unit 
TFNM is as follows: 
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   n

0,1,0 0,0,0 . . 0,0,0 0,0,0
0,0,0 0,1,0 . . 0,0,0 0,0,0

. . . . . .
I . . . . . .

. . . . . .
0,0,0 0,0,0 . . 0,1,0 0,0,0
0,0,0 0,0,0 . . 0,0,0 0,1,0

 
 
 
 
 

=  
 
 
 
 
 

 

 
Definition 5. (Symmetric TFNM). A square TFNM ( )ijA a=  is said to be 

symmetric if A A ,′=  i.e., if  
ij jia a=  for all i,j. 

         Now, we define triangular fuzzy number determinant (TFND) of a TFNM. 
Minor and cofactor of a TFNM defined as in classical matrices. But, TFND has 
some special properties due to the sub-distributive property of TFNs. 
 
Definition 6. (Determinant of TFNM). The triangular fuzzy determinant of a 
TFNM A  of order n n×  is denoted by A  or det ( )A  and is defined as, 

 A  = ( ) ( ) ( ) ( ) ( ) ( ) ( )
n

l u l u
l 1 1 1 l 1 n n n n n n n n

S
Sgn a ,a ,a ... a ,a ,a ,aσ σ σ σ σ σ σ

σ∈

σ∑  

  = ( )
n

n

i i
S i 1

Sgn a σ
σ∈ =

σ∑ ∏  

where ( ) ( ) ( ) ( )
l u

i i i i i i i ia a ,a ,aσ σ σ σ=  are TFNMs and Sn denotes the symmetric group of 

all permutations of the indices { }1,2,...,n  and Sgn 1 or 1σ = −  according as the 

permutation ( ) ( ) ( )
1 2 ... n
1 2 ... n

 
σ =  σ σ σ 

 is even or odd respectively. 

        The computation of det ( )A  involves several products of TFNs. Since the 

product of two or more TFNs is an approximate TFN, the value of det ( )A  is also an 

approximate TFN. 
 
Definition 7. (Minor). Let ( )ijA a=  be a square TFNM of order n n× . The minor 

of an element ija  in det ( )A  is a determinant of order ( ) ( )n 1 n 1− × − , which is 

obtained by deleting the ith row and the jth column from A  and is denoted by ijM . 

Definition 8. (Cofactor). Let ( )ijA a=  be a square TFNM of order n n× . The 

cofactor of an element ija  in A  is denoted by ijA  and is defined as, 

( )i j
ij ijA 1 M+= − . 
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Definition 9. (Adjoint). Let ( )ijA a=  be a square TFNM and ( )ijB b=  be a square 

TFNM whose elements are the co-factors of the corresponding elements in A  then 

the transpose of A  is called the adjoint or adjugate of A  and it is equal to ( )jiA . 

The adjoint of A  is denoted by adj ( )A . 

   Here A  contains n! terms out of which n !
2

 are positive terms and the same 

number of terms are negative. All these n! terms contain n quantities at a time in 
product form, subject to the condition that from the n quantities in product one and 
only one is taken from each row and also single element is taken from each column. 
       Alternatively, a TFD of a TFNM  A = ( )ija  may be expanded in the form 

{ }
n

ij ij
j 1

a .A ,i 1,2,...,n
=

∈∑ , where ijA  is the cofactor of ija . Thus the TFD is the sum of 

the products of the elements of any row (or column) and the co-factors of the 
corresponding elements of the same row (or column). We refer this method as 
alternative method. 
 In classical mathematics, the value of a determinant is computed by any one of 
the aforesaid two processes and both yield same result. But, due to the failure of 
distributive laws of triangular fuzzy numbers, the value of a TFD, computed by the 
aforesaid two process will differ from each other. For this reason the value of a TFD 
should be determined according to the definition, i.e., using the following rule only 

( ) ( ) ( ) ( ) ( ) ( )
n

l u l u
1 1 1 1 1 n n n n n n 1

S
A Sgn a ,a ,a ... a ,a ,aσ σ σ σ σ σ

σ∈

= σ∑ . 

On the other hand, the value of a TFD computed by the alternative process yields 
incorrect result. 
 
4. Circulant TFNM 
Definition 10. A TFNM A  is said to be circulant TFNM if all the elements of A  
can be determined completely by its first row. Suppose the first row of A  is 

l u l u l u l u
1 1 1 2 2 2 3 3 3 n n na ,a ,a , a ,a ,a , a ,a ,a ..., a ,a ,a   . 

Then any element ija  of A  can be determined (throughout the element of the first 
row) as  

( )ij 1 n i j 1a a − + +=  with ( ) 1k1 n ka a+ = . 

A circulant TFNM is the form of 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

l u l u l u l u
1 1 1 2 2 2 n 1 n 1 n 1 n n n

l u l u l u l u
n n n 1 1 1 n 2 n 2 n 2 n 1 n 1 n 1

l u l u l u l u
3 3 3 4 4 4 1 1 1 2 2 2

l u l u
2 2 2 3 3 3 n

a ,a ,a a ,a ,a . . a ,a ,a a ,a ,a

a ,a ,a a ,a ,a . . a ,a ,a a ,a ,a

. . . . . .

. . . . . .

. . . . . .

a ,a ,a a ,a ,a . . a ,a ,a a ,a ,a

a ,a ,a a ,a ,a . . a

− − −

− − − − − −

l u l u
n n 1 1 1,a ,a a ,a ,a

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Remark 1. It is noted that the matrix TFNM A  is circulant if and only if 

( )( )ij k i k ja a ⊕ ⊕=  for every { }i, j,k 1,2,...,n∈ , where ⊕  is sum modulo n. This supply 

that the elements of the diagonal are all equals. 
 
Remark 2. For a circulant TFNM A  we notice that ( )in i 1 1a a ⊕=  and ( )nj 1 j 1a a ⊕=  for 

every { }i, j, 1,2,...,n∈ . 
 
Remark 3. For a circulant TFNM A  we notice that ( ) ( )i j 1i n 1 j

a a ⊕⊕ −
=  for every 

{ }i, j 1,2,...,n∈ . 
 
Remark 4. For a circulant TFNM A  of order n n×  with first row 

l u l u l u l u
1 1 1 2 2 2 3 3 3 n n na ,a ,a , a ,a ,a , a ,a ,a ,..., a ,a ,a   . Then the kth  column of A  is 

( ) ( ) ( )
l u l u l u l u
k k k 1 1 1 n n nk 1 k 1 k 1a ,a ,a , a ,a ,a ,..., a ,a ,a , a ,a ,a− − −


 , 

   ( ) ( ) ( ) ( ) ( ) ( )
l u l u
n 1 n 1 n 1 k 1 k 1 k 1a ,a ,a ,..., a ,a ,a− − − + + +

′
 . 

 
Theorem 1. An n n×  TFNM A  is circulant if and only if n nAC C A= , where nC  
is the permutation matrix of unit TFNM. 

n

0,0,0 0,0,0 . . 0,0,0 0,1,0
0,1,0 0,0,0 . . 0,0,0 0,0,0

. . . . . .
C . . . . . .

. . . . . .
0,0,0 0,0,0 . . 0,0,0 0,0,0
0,0,0 0,0,0 . . 0,1,0 0,0,0

 
 
 
 
 

=  
 
 
 
 
 

 

Proof. Let A  be a TFNM and nP AC= , then ( )
n

ij ik kj
k 1

p a c
=

= ∑ . 
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Since, only 1nc  is 0,1,0  and all other elements of the first row of nC  is 0,0,0 . 
We get ( )ij 1 j 1p a ⊕= . 

Similarly, if nT C A= , then ( )ij i n 1 j
t a

⊕ −
= . 

So, by Remark 3 ij ijp t=  for all i, j n∈ . 

Hence n nAC C A= . So, A  is circulant TFNM.  
Converse is straightforward. 

 
Example 1. Let A  and C  be two circulant TFNMs of order 3 3× , where 

2,3,4 4,6,7 3,6,7 0,0,0 0,0,0 0,1,0
A 3,6,7 2,3,4 4,6,7 and C 0,1,0 0,0,0 0,0,0

4,6,7 3,6,7 2,3,4 0,0,0 0,1,0 0,0,0

   
   = =   
      

. 

Then 
4,6,7 3,6,7 2,3,4 4,6,7 3,6,7 2,3,4

AC 2,3,4 4,6,7 3,6,7 and CA 2,3,4 4,6,7 3,6,7
3,6,7 2,3,4 4,6,7 3,6,7 2,3,4 4,6,7

   
   = =   
      

. 

Thus AC CA= . 
 
Theorem 2. For the circulant TFNMs A  and B . 

(i) A + B  is a circulant TFNM. 
(ii) A′  is a circulant TFNM. 
(iii) AB  is also a circulant TFNM. In particular, kA  is also a circulant 

TFNM. 
(iv) AA′  is circulant TFNM. 

Proof.  (i) Proof is straightforward. 
 (ii) Since A  is circulant TFNM then A  commutes with nC .  
 So, n nAC C A= . Transposing both sides of n nAC C A= , we get 

n nC A A C′ ′ ′ ′=  
or, n n nn nC C A C A C′ ′ ′ ′=  
or, n nA C A C′ ′ ′=   n n n nsince, C C I C C ′ ′= =   

or, n n n n nA C C A C C C A′ ′ ′ ′= = . 
 So, A′  is circulant TFNs. 
(iii) Since, A  and B  are circulant TFNMs, each of A  and B  commutes with nC . 
Hence, AB  commutes with nC . 
 So, by Remark 3 and Theorem 1 we get AB  is circulant TFNM. 

         Proof is similar. 
 
Theorem 3. If A  and B  are circulant TFNMs then AB  = BA . 
Proof. Let AB = C  and BA = D  then both the C  and D  are circulant by Theorem 
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2(iii) and their first rows are 
 l u l u l u l u

1 1 1 2 2 2 3 3 3 n n nc ,c ,c , c ,c ,c , c ,c ,c ,..., c ,c ,c    and 

 l u l u l u l u
1 1 1 2 2 2 3 3 3 n n nd ,d ,d , d ,d ,d , d ,d ,d ,..., d ,d ,d 

   respectively. Then the 

mean value of the kth element of the first row of C and D are respectively 

 kc  = ( )( ) ( )( )
k n

p pk p 1 n p k 1
p 1 p k 1

a b a b− + − + +
= = +

   
+   

   
∑ ∑  

  = ( ) ( )( ) ( )( ) ( )( ) ( )1 k 2 3 2 k 1k 1 k 2 k 1a b a b a b ... a b a b− − −+ + + + +  

   ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )n nk 1 k 2 n 1 n 1 k 2 k 1a b ... a b ... a b a b+ + − − + ++ + + + + + . 

 kd  = ( )( ) ( )( )
k n

p pk p 1 n p k 1
p 1 p k 1

b a b a− + − + +
= = +

   
+   

   
∑ ∑  

  = ( ) ( )( ) ( )( ) ( )( ) ( )1 k 2 3 2 k 1k 1 k 2 k 1a b a b a b ... a b a b− − −+ + + + +  

   ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )n nk 1 k 2 n 1 n 1 k 2 k 1a b ... a b ... a b a b+ + − − + ++ + + + + + . 

It can be easy to see that k kc d= . 
        The left hand spread of the kth element of the first row of C and D are 

 l
kc  = ( ) ( )( ) ( ) ( )( )p p p

k n
l l l l

pk p 1 k p 1 n p k 1 n p k 1
p 1 p k 1

a b a b a b a b− + − + − + + − + +
= = +

+ + +∑ ∑  

  = ( ) ( ) ( )( ) ( ) ( )( )l l l l l
1 k 1 k 2 2k 1 k 1 n 1 k 2a b a b a b a b ... a b− − − ++ + + + +  

   ( ) ( )( ) ( )( )l l l
n n k 2n 1 k 2 k 1a b a b a b +− + ++ + + . 

 l
kd  = ( ) ( )( ) ( ) ( )( )p p p

k n
l l l l

pk p 1 k p 1 n p k 1 n p k 1
p 1 p k 1

b a b a b a b a− + − + − + + − + +
= = +

+ + +∑ ∑  

  = ( ) ( ) ( )( ) ( ) ( )( )l l l l l
1 k 1 k 2 2k 1 k 1 n 1 k 2b a a b b a b a ... b a− − − ++ + + + +  

   ( ) ( )( ) ( )( )l l l
n n k 2n 1 k 2 k 1b a b a b a +− + ++ + + . 

      It can be easy to see that l l
k kc d= . 

      Similarly we can see, the right hand spread of the kth element of the first row of 
C and D are equal i.e., u u

k kc d= . 
      Since C  and D  are circulant, we have ij ijc d=  and hence the theorem is proved. 
 
Theorem 4. A circulant TFNM A  is symmetric iff ( )1 1 2i n ia a − += for every 

{ }1,2,...,i n∈  

Proof. Let A  be symmetric, then 
  ( )( ) ( )( )1i i11 k i k i k 1 ka a a a⊕ ⊕ ⊕ ⊕= = =  for every { }i,k 1,2,...,n∈ . 

       Taking k n i= − , then 
 ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )n n i 1 1 n i 21 n 1 i n i i n i 1 n ia a a a− + − +⊕ − ⊕ − ⊕ − ⊕ −= = =  by remark 2. 
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Conversely, suppose ( )1i 1 n i 2a a − +=  for every { }i 1,2,...,n∈ , then ( )( )i1 i k 1 ka a + +=  for  

  
every { }i,k 1,2,...,n∈ . 
       Taking k n i= − , we get 

( ) ( )( )il 1in n i 1 n i 2
a a a 1 a− + − +

= = + = . But since A  is circulant and 1i i1a a= . We have 

ij jia a=  for every { }i,k 1,2,...,n∈  and A  is symmetric. 
 
Theorem 5. If a TFNMs A  is circulant, then EA  is symmetric where E  is a 
permutation matrix of unit TFNM and the form of E  is 

0,0,0 0,0,0 . . 0,0,0 0,1,0
0,0,0 0,0,0 . . 0,1,0 0,0,0

. . . . . .
E . . . . . .

. . . . . .
0,0,0 0,1,0 . . 0,0,0 0,0,0
0,1,0 0,0,0 . . 0,0,0 0,0,0

 
 
 
 
 

=  
 
 
 
 
 

. 

Proof. Let R EA= , then 
n

ij ik kj
k 1

r e a
=

= ∑  for all i, j,k 1,2,...,n= . 

Since, E  is a permutation matrix of unit TFNM and only the elements 

( ) ( )1n n11 n 1 1 n 2e ,e ,e ,...,e− −  are 0,1,0  and all others elements are 0,0,0 , we get 

 ijr  = 
n

ik kj
k 1

e a
=

∑  = ( )n i 1 ja − +  

Now, since A  is circulant, we know 
 ( ) ( )( )( )ij n i 1 j n i 1 k k jr a a− + − + ⊕ ⊕= =  for all { }i, j,k 1,2,...,n∈ . 

when, k i= , then 
  ( ) ( )( ) ( )ij n i 1 j n 1 i j 1 i jr a a a− + ⊕ ⊕ ⊕= = =  

 and ( ) ( )( )( )ji n j 1 i n j 1 k k ir a a− + − + ⊕ ⊕= =  for { }i, j,k 1,2,...,n∈  

Taking k j= , then 
  ( ) ( )( ) ( )ji n j 1 j n 1 i j 1 i jr a a a− + ⊕ ⊕ ⊕= = = . 

Hence ij jir r=  and thus R  is symmetric. 

Theorem 6. Let A  be a circulant TFNM of order n n× . Then 
(i) adj A  is also circulant TFNM. 
(ii) If A  is a square TFNM then A A′= . 

(iii) adj A  = ( )adjA ′ . 

Proof. (i) We have to prove co-factor of the elements ( )i j 1a ⊕  and ( )i n 1 j
a

⊕ −
 for all 
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i, j n∈  are same. 
Since A  is circulant then by Remark 3, ( ) ( )i j 1 i n 1 j

a a⊕ ⊕ −
=  and so the minor of ( )i j 1a ⊕  

and ( )i n 1 j
a

⊕ −
 are will be same. 

 Now, co-factor of ( ) ( ) ( )
( )

n
k i

k j 1

n
i j 1

i j 1 k k
S k 1

a 1 Sgn a
≠

≠ ⊕

+ ⊕

⊕ σ
σ∈ =

= − σ∑ ∏  and 

 ( ) ( )( )
( )

( )
n

k j
k i n 1

n
i n 1 j

k ki n 1 j
S k 1

a 1 Sgn a
≠

≠ ⊕ −

⊕ − +

σ⊕ −
σ∈ =

= − σ∑ ∏  

         It is obvious that for fixed n, the sign of ( ) ( )i j 11 + ⊕−  and ( )( )i n 1 j1 ⊕ − +−  is same for 
all { }i, j 1,2...n∈ . 
 So, the co-factor of ( )i j 1a ⊕  and ( )i n 1 j

a
⊕ −

 are same. 

Hence adj A  is also circulant TFNM. 
 (ii) Let ( )ij n n

A a
×

=   be a square TFNM and ( )ij n n
A B b

×
= = . Then, 

  B  = ( ) ( ) ( )1 1 2 2 n n
Sn

Sgn b ,b ,...bσ σ σ
σ∈

σ∑  = ( ) ( ) ( )1 1 2 s n n
Sn

Sgn a ,a ,...aσ σ σ
σ∈

σ∑ . 

 Let φ be a permutation of { }1,2,...,n  such that Iφσ = , the identity 
permutation. Then 1−φ = σ . Since σ runs over the whole set of permutations, φ also 
runs over the same set of permutation. Let ( )i jσ =  then ( )1i j−= σ  and ( ) ( )i i j ja aσ φ=  

for all i,j. Therefore, 
 B  = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

n

l u l u l u
1 1 1 1 1 1 2 2 2 2 2 2 n n n n n n

S
Sgn a ,a ,a a ,a ,a ... a ,a ,aσ σ σ σ σ σ σ σ σ

σ∈

σ∑  

  = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n

l u l u l u
1 1 1 1 1 1 2 2 2 2 2 2 n n n n n n

S

Sgn a ,a ,a a ,a ,a ... a ,a ,aσ σ σ σ σ σ σ σ σ
φ∈

φ∑  

  = A . Hence, A = A′ . 

(iv) Similar to (i) and (ii). 
 
5. Distance Between Normal Generalized TFNMs 
Definition 11. (Generalized triangular number fuzzy matrix (GTFNM)). A 
TFNM of order m n×  is defined as ( )ij m n

A a
×

= , where l u
ij ij ij ija a ,a ,a=  is the ijth 

element of ijA,a  is the mean value of A  and l u
ij ija ,a  are the left and right spreads of 

ija  respectively. It is said to be generalized if l u
ij ij ija a a≤ ≤ . 

 In this section we proposed a method to make a score value by standardizing 
each element l u

ij ij ij ija a ,a ,a=  of a TFNM A as follows: 

 Step 1: Each generalized TFN is standardized as follows: 
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l u
ij ij ij

ij u u u
ij ij ij

a a a
a , ,

a a a
=  

l* * u*
ij ij ija ,a a=  

 Step 2: Calculate the defuzified value *
ija

x  using the following rule: 

ij

l* * u*
ij ij ij

a*

a a a
x

3
+ +

=  

 Step 3: Calculate the spread *
ija

std  of the *
ija  as follows: 

( ) ( ) ( )* * *
ij ij ij

*
ij

2 2 2
l* * u*
ij ij ija a a

a

a x a x a x
std

3

− + − + −
=  

 Step 4: Calculate, score ( )*
ija , the score value of the standardized 

generalized TFN as follows: 

( ) ( )* *
ij ij

*
ij a a

score a x . 1 .std= − α  

Note 2. It is noted that score value of any generalized TFN must be a real number 
and it’s value belongs to the interval [0,1]. 
       Also, it is noted that, α  is a parameter for adjusting the degree of importance of 
the spread of a generalized TFN and { }0.5,1.5α = . If the exparte consider the 
spread is more important than α is taken as 1.5 otherwise α equal to 0.5. 
       Now we define two basic distances between TFNMs. The distance δ is a 
mapping from the set of TFNMs (M) to the set of real number (R). 

: M M Rδ × →  
Score-distance (SD): The SD between two TFNMs A  and B  of order m n×  is 

( ) ( ) ( )
m n

* *
ij ij

i 1 j 1
SD A,B score a score b

= =

= −∑∑ . 

It is obvious ( )0 SD A,B m.n.≤ ≤  The score distance SD : M M R× →  satisfy the 

following conditions: 
 (i) ( )SD A,B 0 for all A,B M.≥ ∈  

 (ii) ( )SD A,B 0 iff A B for all A,B M.= = ∈  

 (iii) ( ) ( )SD A,B SD B,A for all A,B M.= ∈  

 (iv) ( ) ( ) ( )SD A,B SD A,C SD C,B for all A,B,C M≤ + ∈ (triangular 

property). 
       Thus the SD is metric on M. 
 
Normalized Score-distance (SD*): The normalized SD is defined as: 

( ) ( )*
SD A,B

SD A,B
m.n

= , where ( )*0 SD A,B 1≤ ≤ . 
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Euclidian score-distance (E): The Euclidian SD is defined as : 

( ) ( ) ( )
m n 2

* *
ij ij

i 1 j 1
E A,B score a score b ,

= =

 = − ∑∑  where ( )*0 SD A,B mn≤ ≤ . 

The Euclidian distance is also a metric on M. 
 
Normalized Euclidian score-distance (SD): The normalized Euclidian SD is 
defined as : 

( ) ( )*
E A,B

E A,B
m.n

= , where ( )*0 E A,B 1≤ ≤ . 

Example 2. Let A =
1,3,4 1,4,5 2,3,5
2,3,6 1,3,5 2,3,8
1,4,5 1,3,4 2,4,5

 
 
 
  

 and 

3,5,6 1,3,7 2,2,5
B 2,3,8 1,4,5 2,4,5

3,4,7 1,3,5 2,3,6

 
 =  
  

 

Then score ( )*A  = 
0.35 0.24 0.43
0.35 0.30 0.27
0.32 0.35 0.47

 
 
 
  

 

score ( )*B  = 
0.40 0.24 0.39
0.27 0.32 0.48
0.42 0.31 0.35

 
 
 
  

 

Then ( )SD A,B 0.66=  by taking α = 1.5. 

 
6. Conclusion 
 In this article some important properties of circulant triangular fuzzy 
number matrices (TFNM) are defined. The concept of adjoint of circulant TFNM is 
discussed and some properties of determinant of circulant TFNM are presented in 
this article. Finally we define generalized TFNM and also investigate the distance 
measure of generalized circulant TFNMs. It is true fact that circulant TFNM is very 
much useful in our daily life. In a subsequent paper we will try to develop the 
measure of sign-distance of circulant TFNMs and comparative results of our 
proposed distance, sign-distance and Cheng distance [5]. 
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