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ABSTRACT 
 

For any graph G, the Equi-eccentric point set graph Gee is defined on the same set of 
vertices by joining two vertices in Gee if and only if they correspond to two vertices 
of G with equal eccentricities. The Glue graph Gg is defined on the same set of 
vertices by joining two vertices in Gg if and only if they correspond to two adjacent 
vertices of G or two adjacent vertices of Gee. 

In this paper, radius and diameter of Glue graphs are studied. Eccentricity of 
each vertex of a glue graph is analyzed. Bounds for radius and diameter of a glue 
graph are given. Also, radius and diameter of glue graphs under certain conditions are 
found.  
                             
Keywords:  Equi-eccentric point set graph, Glue graph.               
 
1. Introduction 
We consider only finite undirected graphs without loops and multiple edges. Let 
V(G) and E(G) denote the vertex set and edge set of G respectively. Eccentricity of a 
vertex u ∈ V(G) is defined as e(u) = max   {d(u, v) : v ∈ V(G)}, where d(u, v) is the 
distance between u and v in G. The minimum and maximum eccentricities are the 
radius r and diameter d of G. When d(G) = r(G), G is called a self-centered graph 
with diameter d or r. A vertex u is said to be an eccentric point of v, when d(u, v) = 
e(v). In general, u is called as an eccentric point, if it is an eccentric point of some 
vertex, otherwise non-eccentric. Let Ek denote the set of vertices of G with 
eccentricity k and Ek = ck, the cardinality of Ek. We have cr ≥ 1 and ci > 1, i = r+1, 
r+2, ..., d.[2]. The definitions and details not furnished here may be found in 
Buckley and Harary [2]. 

For any graph G, the equi-eccentric point set graph Gee is a graph with 
vertex set V(G) and two vertices are adjacent if and only if they correspond to two 
vertices of G with equal eccentricities. The Glue graph Gg of G is a graph with the 
same vertex set V(G) and two vertices are adjacent if and only if they correspond to 
two adjacent vertices of Gee or two adjacent vertices of G. 
 The importance of perfect graphs is both theoretical and practical because of 
their application to perfect channels in communication theory, problems in 
operations research, optimizing municipal services etc. The Glue graph Gg is 
Hamiltonian and perfect. Also, G is a spanning subgraph of Gg and connectivity of 
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Gg increases and diameter of Gg decreases as that of G. Hence, these graphs will be 
useful in communication theory. 

Now, let us state some important properties of the graph G. 
(1) If G has a unique central vertex it may not be adjacent to every vertex of 
eccentricity r+1, but the central vertex must be adjacent to at least two vertices of 
eccentricity r+1. 
(2) The induced sub graph formed by the vertices in Er+i, i ≥ 1 is not complete. 
(3) A vertex in Er+i is not adjacent to every vertex of Er+i+1. 
(4) Any vertex with eccentricity k is adjacent to a vertex with eccentricity k or 
adjacent to a vertex with eccentricity k−1 or adjacent to a vertex with eccentricity 
k+1. 
(5) Er ≥ 1 and Ek ≥ 2 for all k > r. 
(6) There exist at least two edges connecting vertices of Ek to vertices of Ek+1 in G, k 
≥ r. 
(7) There exist at least two vertices in each Er+i, which are adjacent to vertices of 
Er+i+1 and there exist at least two vertices, which are adjacent to vertices of Er+i−1, …, 
at least two vertices in Ed, which are adjacent to vertices of Ed−1. 
(8) A vertex in Er+1 may be adjacent to every vertex of Er. 
 Now, let G be a tree with radius r and diameter d (d = 2r or 2r−1). G is n = 
d−r+1 eccentric. If d−r+1 is even, then in Gg all the vertices in Er, Er+1, …, E(r+d)/2 
have some of their eccentric points in Ed, and all the vertices in E(r+d)/2, E(r+d)/2 

+1,…, Ed have some of their eccentric points in Er. If d−r+1 is odd, then in Gg all the 
vertices in Er, Er+1, …, E[(r+d)/2]−1 have some of their eccentric points in Ed and all the 
vertices in  E[(r+d)/2]+1, …, Ed have some of their eccentric points in Er and vertices in 
E(r+d)/2 have their eccentric points in Er or in Ed. 

2.Main Results 

First, we shall find out the exact values of radius and diameter of Gg when G is a 
tree. 

Theorem 2.1 If T is a tree with diameter d and radius r, diameter of Tg is r and 
radius of Tg is (r+1)/2 or (r+2)/2. 
 
Proof: Case 1: T is a uni-central tree. 
Since T is uni-central d(T) = 2r. 
 
Sub case 1.1: r is even. 
T is n eccentric, where n = d−r+1 = r+1, since d = 2r. Let vr be the central vertex. In 
Tg, eccentric pointvr of vr lies in Ed, and d(vr,vr) = r in Tg. Hence, e(vr) in Tg is r. 
Let vr+1 ∈ Er+1, In Tg, eccentric pointvr+1 of vr+1 is in Ed and d(vr+1,vr+1) = r in Tg. 
[vr+1 is the eccentric point of vr+1 in T, then there exists a path vr+1 vr vr+1′ vr+2 
…vr+1, where vr+1′ ∈ Er+1, which is not adjacent to vr in T. Hence, vr+1 vr+1′ 
vr+2…vr+1 = vd is a shortest path in Tg]. Therefore, e(vr+1) = r in Tg. Similarly, we 
can prove that in Tg, e(vr+2) = r−1, where vr+2 ∈ Er+2, e(vr+3) = r−2, where vr+3 ∈ Er+3 
... ,  e(vr+r/2) = r−(r/2−1) = (r+2)/2,  
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where vr+r/2 ∈ Er+r/2, … , e(vd) = e(v2r) = r, where vd ∈ Ed. Also in Tg, the maximum 
eccentricity is obtained for elements in Er, Er+1, Ed. The minimum eccentricity is 
obtained for elements in Er+r/2. Hence, d(Tg) = r and r(Tg) = (r+2)/2. 
 
Sub case 1.2: r is odd. 
Since r is odd n = d−r+1 is even. As in the previous case, we can prove in Tg, e(vr) = 
r, e(vr+1) = r, e(vr+2) = r−1, …, e(vr+(r−1)/2) = r−[(r−1)/2−1] = (r+3)/2, 
e(vr+(r+1)/2) = r+(r+1)/2−r = (r+1)/2, since in Tg, eccentric point of vk ∈ Ek, k > 
r+(r−1)/2 is in Er. e((vr+(r+3)/2) = r+(r+3)/2−r = (r+3)/2, ..., e(vd) = e(v2r) = 2r−r = r. 
Hence, d(Tg) = r and r(Tg) = (r+1)/2. 
 
Case 2: T is bi-central. 
In this case, d = 2r−1, odd.  
 
Sub case 2.1: r is even. 
T has r eccentric sets. In T, no element of Er+1 is adjacent to all the elements of Er, no 
element of Er+1 is adjacent to more than one element in Er, since T is a tree. Let Er =     
{vr, vr′}. Letvr ∈ Ed be the eccentric point of vr in T. Then the shortest path is vr vr′ 
vr+1 vr+2… vd =vr in T. Hence in Tg, the shortest path is vr vr+1 vr+2… vd =vr. 
Therefore, d(vr,vr) = r in Tg. This gives e(vr) = r in Tg. Similarly, e(vr′) = r in Tg. 
Now, take vr+1 ∈ Er+1 in T, its eccentric point is in Ed. The shortest path in T is vr+1 vr 
vr′ vr+1′ vr+2… vd =vr+1. Hence, the shortest path in Tg is vr+1 vr+1′ vr+2… vd =vr+1. 
Hence, d(vr+1,vr+1) = r−1 in Tg. Therefore, e(vr+1) = r−1 in Tg. Similarly, we can 
prove in Tg, e(vr+2) = r−2,…,e(vr+(r/2−1)) = r−(r/2−1) = (r+2)/2. e(vr+r/2) = (r+2)/2, since 
in this case eccentric point of vr+r/2 in Tg is in Er. (Since T is a tree, eccentric point of 
vr+r/2 in T is in Ed, say vd. Therefore, vr+r/2 vr+r/2−1… vr+1 vr vr′ vr+1′ vr+2′… vr+r/2′… vd = 
vr+r/2 is the shortest path in T and d = 2r−1 and hence in Tg, vr′ is the eccentric point 
of vr+r/2 and d(vr+r/2, vr′) = r/2+1 = (r+2)/2). ..., e(vd−1) = r−1, e(vd) = r. 
Hence, d(Tg) = r and r(Tg) = (r+2)/2. 
 
Sub case 2.2: r is odd. 
Since r is odd, n = d− r+1 = r is odd. As in the previous case, in Tg, 
e(vr) = r, e(vr+1) = r−1, …, e(vr+(r−1)/2) = r−(r−1)/2 = (r+1)/2, …,e(vd) = r. 
Hence, d(Tg) = r and r(Tg) = (r+1)/2. Combining all the cases, we see that, d(Tg) = r 
and r(Tg) = (r+1)/2  or (r+2)/2. This proves the theorem. 

Now, let us find out the radius and diameter of Gg, when d is 2r or 2r−1. 

Theorem 2.2 Let G be a connected graph with radius r and diameter d = 2r, then 
d(Gg) is r and r(Gg) is (r+1)/2 or (r+2)/2. 
 
Proof: Ek = {u ∈ V(G): eG(u) = k}. G is n eccentric, where n = d−r+1 = r+1. 
Case 1: r is odd.  
Since d = 2r, every element of Er lies on some diametral path joining two peripheral 
vertices at distance d = 2r in G. Hence, e(vr) = r in Gg for all vr in Er. Now, consider, 
vr+1 ∈ Er+1. In Gg, there exists a pointvr+1, eccentric point of vr+1 lies in Ed and vr+1 is 



T.N.Janakiraman, M.Bhanumathi and S.Muthammai 
 

126

not adjacent to every element of Er+2. Hence, the shortest path from vr+1 tovr+1 in G 
is of the form vr+1 vr vr+1′ vr+2… vd =vr+1. Hence in Gg, the shortest path is vr+1 vr+1′ 
vr+2… vd =vr+1 or vr+1 vr+2′ vr+2… vd =vr+1. (Here vr+2′ is adjacent to vr+1 in G.) 
Therefore, d(vr+1,vr+1) = d−r = r in Gg. Hence, e(vr+1) = r in Gg. Similarly, we can 
prove that e(vr+2) = r−1 in Gg. e(vr+3) = r−2, ..., e(v(r+d)/2) = r−[(r−1)/2−1] = (r+3)/2, 
e(v(r+d)/2) = (r+2)/2, (since elements of E(r+d)/2  have their eccentric points in Er)…, 
e(vd) = r. Hence, d(Gg) is r and r(Gg) is (r+1)/2. 
 
Case 2: r is even. 
As in the previous case, in Gg 

e(vr) = r, e(vr+1) = d−r = r, …,  e(v(r+d)/2) = d−{ r+[(r+d)/2]−1} = (r+2)/2, ..., e(vd−1) = 
r+1, e(vd) = r. Hence, d(Gg) is r and r(Gg) is (r+2)/2. 
This proves the theorem. 

Remark 2.1 If r is even and d = 2r, Gg is self-centered if and only if r = 2. 

The next two theorems give the bounds for radius and diameter of Gg when G is a 
graph with radius r and diameter d. 

Lemma 2.1 d(Gg) is at most r. 
 
Proof: Take vr in Er. For all x in V(G), d(vr, x) ≤ r. Hence, in Gg also d(vr, x) ≤ r for 
all x in V(Gg) and vr in Er. Now consider vr+1 in Er+1. In Gg, d(vr, vr+1) ≤ r for all vr in 
Er. Consider vr+2 in Er+2. The shortest path from vr in Er to vr+2 in Er+2 contains at 
least one element from Er+1 and the length of the path is at most r. Also in Gg, any 
two elements of Er+1 are adjacent and hence d(vr+1, vr+2) ≤ r for all vr+2 ∈ Er+2 in Gg. 
Similarly, d(vr+1, vr+3) ≤ r for all vr+3 ∈ Er+3 in Gg,…, d(vr+1, vd) ≤ r for all vd ∈ Ed in 
Gg. Hence, e(vr+1) ≤ r in Gg. Similarly, we can prove that e(vr+2) ≤ r, e(vr+3) ≤ r,…,  
e(vd) ≤ r for all vr+2 ∈ Er+2, vr+3 ∈ Er+3,…, vd ∈ Ed. Hence, diameter of Gg is at most r. 

Theorem 2.3 d−r ≤ d(Gg) ≤ r. 
 
Proof: Consider vr ∈ Er. In Gg, some eccentric points of vr is in Ed and hence d(vr 

,vd) ≥ d−r for all vd ∈ Ed. Hence, e(vr) ≥ d−r. Therefore, d(Gg) ≥ d−r. By lemma 2.1 
d(Gg) ≤ r. Thus, d−r ≤ d(Gg) ≤ r. 

Remark 2.2 Upper bound in the above inequality for d(Gg) is attained, when d < 2r 
also.  

Theorem 2.4  
 (1) Radius of Gg  ≤  (3r−d+1)/2 or (3r−d+2)/2. 
 (2) Radius of Gg ≥ (d−r)/2 or (d−r−1)/2. 
 
Proof: Let vr ∈ Er and vd ∈ Ed. In G, d(vr, vd) ≤ r for all vr ∈ Er and vd ∈ Ed. vr ∈ Er 
may be adjacent to some element of Er+1 or not.  vr+i ∈ Er+i may be  adjacent to some 
element of Er+i+1, Er+i or Er+i−1. But every path from vr to vd contains at least one 
element from Er+1, Er+2, …, Ed. Let P be a shortest path from vr to vd. 
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Case 1: n = d−r+1 is odd. 
In this case, d is even and r is even or d is odd and r is odd. P contains vertices from 
each Ek, k = r, r+1, …, d. Let P contains the point v(r+d)/2 ∈ E(r+d)/2. Split the path P 
into two parts, path from vr to v(r+d)/2 and path from v(r+d)/2 to vd. Since P contains at 
least one vertex from each Ek, k = r, r+1, …, d, distance from vr to v(r+d)/2 is least 
when P contains exactly one vertex from each Ek, k = r+1, r+2,…, (r+d)/2. 
Therefore, d(vr, v(r+d)/2) =     d(vr, v(r+(d−r)/2)) ≥ (d−r)/2 and distance from vr to v(r+d)/2 is 
maximum when P contains exactly one vertex from each Ek, k = (r+d)/2+1, …, d. 
Hence, d(vr, v(r+d)/2) ≤ r−{(d−r)−(d−r)/2} = r−(d−r)/2 = (3r−d)/2; that is d(vr, v(r+d)/2) ≤ 
(3r−d)/2 when vr and v(r+d)/2 are points in P. Hence, in Gg for any vr ∈ Er  and v(r+d)/2 ∈ 
E(r+d)/2, d(vr, v(r+d)/2) ≤ (3r−d)/2+1 = (3r−d+2)/2 and d(vr, v(r+d)/2) ≥ (d−r)/2. Similarly, 
we can prove that, in Gg, d(vd, v(r+d)/2) ≥ (d−r)/2 and, d(vd, v(r+d)/2) ≤ (3r−d+2)/2 for 
any vd ∈ Ed and v(r+d)/2 ∈ E(r+d)/2. From the structure of Gg, it is clear that the central 
vertices of Gg belong to E(r+d)/2 and their eccentric vertices are in Er or in Ed. Hence, 
(d−r)/2 ≤ r(Gg) ≤ (3r−d+2)/2. 
 
Case 2: n = d−r +1 is even. 
In this case, d is even and r is odd or d is odd and r is even. 
From the structure of Gg, it is clear that the central vertices of Gg belongs to E(r+d)/2 

or E(r+d)/2 and (r+d)/2  = (r+d−1)/2, (r+d)/2 = (r+d+2)/2. As seen in case 1,  
d(vr, v(r+d−1)/2) ≤ r−{(d−r)−(d−r−1)/2} = r−d+r+(d−r−1)/2 = (3r−d−1)/2 and  
d(vr, v(r+d+1)/2) ≤ r−{(d−r)−(d−r+1)/2} = (3r−d+1)/2 for vr, v(r+d−1)/2, v(r+d+1)/2, in the 
path P. Hence in Gg, r(Gg) ≤ (3r−d+1)/2. Also for vr, v(r+d−1)/2, v(r+d+1)/2 in P, d(vr, 
v(r+d−1)/2) =   d(vr, v(r+(d−r−1)/2)) ≥ (d−r−1)/2 and d(vr, v(r+d+1)/2) ≥ (d−r+1)/2. Hence in Gg, 
r(Gg) ≥ (d−r−1)/2. Thus, (d−r−1)/2 ≤ r(Gg) ≤ (3r−d+1)/2. This proves the theorem. 

 Next we give some upper bounds for radius and diameter of Gg, where G 
satisfies some conditions. 

Theorem 2.5 If there exists vertices vr in Er, vd in Ed such that there exists a path of 
length d−r from vr to vd in G, then radius of Gg is at most        
  (d−r+4)/2 if d−r is even.                                    
  (d−r+5)/2 if d−r is odd. 
Moreover, if G has a unique central vertex, then radius of Gg is at most    
  (d−r+2)/2 if d−r is even. 
  (d−r+3)/2 if d−r is odd. 
 
Proof: Let vr′ in Er and vd′ in Ed such that there exists a path of length d−r from vr′ to 
vd′. Hence in Gg, e(vr) ≤ max {2, d−r+2} for vr in Er; e(vr+1) ≤ max {3, d−r+1 } for 
vr+1 in Er+1; e(vr+2) ≤ max {4, d−r } for vr+2 in Er+2;……; 
e(v(r+d)/2) ≤ max {(d−r)/2+2, (d−r+2)−(d−r)/2} = max {(d−r+4)/2, (d−r+4)/2}; 
e(v(r+d)/2+1) ≤ max {(d−r+2)/2+2, (d−r)−(d−r)/2+2} = max {(d−r+6)/2, (d−r+4)/2}; 
…; e(vd) ≤ max {d−r+1, 3} for vd in Ed. Thus, radius of Gg ≤ (d−r+4)/2, if d−r is 
even. Similarly, we can prove that radius of Gg ≤ (d−r+5)/2, if d−r is odd. 
 Suppose G is a graph with unique central vertex, then 
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 Case 1: d−r is odd. 
e(vr+1) ≤ max {2, d−r+1} for vr+1 in Er+1; e(vr+2) ≤ max {3, d−r} for vr+2 in Er+2; …; 
e(v(r+d)/2) ≤ max {(d−r+1)/2, (d−r+5)/2} for v(r+d)/2 ∈ E(r+d)/2;  
e(v(r+d)/2) ≤ max {(d−r+3)/2, (d−r+3)/2} for v(r+d)/2 ∈ E(r+d)/2; …;  
e(vd) ≤ max {d−r+1, 2} for vd in Ed. Thus, radius of Gg is ≤ (d−r+3)/2. 
Case 2: d−r is even.  
e(v(r+d)/2) ≤ max {(d−r)/2, (d−r)−(d−r)/2+2} for v(r+d)/2 ∈ E(r+d)/2;  
e(v(r+d)/2+1) ≤ max {(d−r+2)/2, (d−r+2)/2} for v(r+d)/2+1∈ E(r+d)/2+1;…;  
e(vd) ≤ d−r+1 for vd in Ed. Thus, radius of Gg is ≤ (d−r+2)/2 if d−r is even.  
 This proves the theorem. 

Now, assume that the graph G satisfies the following property A. 

 
Property A: Every vertex with eccentricity k, where k > r has adjacent vertices with 
eccentricity k−1 and k+1 and vertices in Er have adjacent vertices in Er+1. 

In the following theorem we give bounds for radius and diameter of Gg, where G is a 
unicentral graph which satisfies the property A. 

Theorem 2.6 Let G be a connected uni-central graph with radius r and diameter d < 
2r, which satisfies property A, then diameter of Gg is d−r+1 and radius of Gg is 
(d−r+3)/2 or(d−r+1)/2 if d−r is odd, (d−r+2)/2 if d−r is even. 
 
Proof: G is n-eccentric, where n = d−r+1. 
 
Case 1: d−r is odd. 
 
Sub case 1.1: There exists vd ∈ Ed such that dG(vr, vd) = d−r or there exists vr+i ∈ 
Er+i, where i ≥ (d−r+1)/2 such that dG(vr, vr+i) = i. 
In Gg, some eccentric points of elements in Er, Er+1,…, E(r+d)/2 are in Ed. Take vr ∈ 
Er. In Gg,vr the eccentric point of vr is in Ed. Since d < 2r, there is no shortest path 
like vr vr+1 vr+2… vd−1 vd =vr in G. (Otherwise, e(vr) = d−r < r.) Therefore, in G, the 
shortest path from vr tovr contains more than one element from some of the Er+i's. 
But in Gg, < Er+I > is complete and G satisfies property A. Hence in Gg, the shortest 
path from vr tovr is of the form vr vr+1… vk′ vk… vd =vr, where vk, vk′ ∈ Ek. Hence, 
in Gg, d(vr,vr) = d−r+1, e(vr) = d−r+1 and e(vr) = d−r+1. Similarly, we can prove 
that e(vr+1) in Gg is d−r; e(vr+2) in Gg is d−r−1;…; e(v(r+d)/2) = d−{r+(d−r−1)/2−1} = 
(d−r+3)/2. 
 Now, consider E(r+d)/2. In Gg, elements of E(r+d)/2 have eccentric points in          
Er = { vr}. If the distance between v(r+d)/2 = vr+(d−r−1)/2 and vr in G is (d−r+1)/2, then 
e(vr+(d−r−1)/2) in Gg is (d−r+1)/2 (using the assumption), otherwise (d−r+3)/2. 
Therefore, e(v(r+d)/2) = (d−r+1)/2 or (d−r+3)/2, e(v(r+d)/2+1) = (d−r+3)/2, or 
(d−r+5)/2, ..., 
 e(vd−1) = d−r−1 or d−1, e(vd) = d−r or d−r+1.  
Hence, diameter of Gg is d−r+1 and radius of Gg is (d−r+1)/2. 
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Subcase 1.2: There exists no vr+i in Er+i, i ≥ (d−r+1)/2 such that d(vr, vr+i) = i, in G. 
In this case, e(v(r+d)/2) = (d−r+3)/2, e(v(r+d)/2+1) = (d−r+5)/2, ..., 
                    e(vd−1) = d−r, e(vd) = d−r+1 in Gg. 
Hence, diameter of Gg is d−r+1 and radius of Gg is (d−r+3)/2. Therefore, when d−r is 
odd, diameter of Gg is d−r+1 and radius of Gg is (d−r+1)/2 or (d−r+3)/2. 
 
Case 2: d−r is even. 
 
Sub case 2.1: There exists vr+i in Er+i such that d(vr, vr+i) = i for all i ≥ (d−r+1)/2 in 
G. 
As in case 1, we can prove, in Gg, e(vr) = d−r+1, e(vr+1) = d−r, …, 
e(v(r+d)/2) = (d−r+2)/2, e(v(r+d)/2+1) = (d−r+2)/2 or (d−r+4)/2, …, 
e(vd−1) = d−r−1 or d−r and  e(vd) = d−r+1 or d−r.   
 
Sub case 2.2: There exists no vr+i in Er+i, i ≥ (d−r+1)/2 such that d(vr, vr+i) = i in G.  
In this case, in Gg, e(vr) = d−r+1, e(vr+1) = d−r,…, e(v(r+d)/2) = (d−r+2)/2,  
e(v(r+d)/2+1) = (d−r+4)/2 ,…, e(vd−1) = d−r, e(vd) = d−r+1. Hence, in both the sub cases 
diameter of Gg is d−r+1 and radius of Gg is (d−r+2)/2. Therefore, when d−r is even, 
diameter of Gg is d−r+1 and radius of Gg is (d−r+2)/2.                                    
 This proves the theorem. 

Remark 2.3 Suppose G is bi-eccentric uni-central with diameter d less than 2r, then 
d−r is odd (r ≥ 2) and each element of Er+1 need not be adjacent to every element of 
Er in G. If vr+1 in Er+1 is adjacent to all the elements of Er, then in Gg, e(vr+1) is one 
and for other elements of Er+1, eccentricity is two in Gg. Hence, Gg is bi-eccentric 
with diameter two. 

In the following theorem we give bounds for radius and diameter of Gg, 
where G is a  graph with more than one central vertex and satisfies the property A.  

Theorem 2.7 Let G be a graph with radius r ≥ 2 and diameter d < 2r, having more 
than one central vertex with property A. Then diameter of Gg is d−r+1 and radius of 
Gg is (d−r+3)/2 if d−r is odd and (d−r+2)/2 if d−r is even. 
 
Proof: It is given that Er= cr ≥ 2. Therefore, vr in Er is not adjacent to at least one 
element of Er+1 and vice versa (since d < 2r and G satisfies property A this is true).  
 
Case 1: d−r is odd. 
If n = 2, then G is bi-eccentric. In this case Gg is self-centered with diameter two. If 
n > 2, as in the previous theorem, in Gg, e(vr) = d−r+1, e(vr+1) = d−r,…, e(v(r+d)/2) = 
(d−r+3)/2, e(v(r+d)/2) = (d−r+3)/2,…, e(vd−1) = d−r, e(vd) = d−r+1. Therefore, 
diameter of Gg is d−r+1 and radius of Gg is (d−r+3)/2. 
 
Case 2: d−r is even. 
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In Gg, e(vr) = d−r+1, e(vr+1) = d−r,…, e(v(r+d)/2) = (d−r+2)/2, …, e(vd−1) = d−r, e(vd) = 
d−r+1. Therefore, diameter of Gg is d−r+1 and radius of Gg is (d−r+2)/2. This proves 
the theorem. 

Eccentricity properties ofGg 

Next, we study the eccentricity properties ofGg for a connected graph G. 

Let G be a connected (p, q) graph with radius r and diameter d. Let n = d−r+1.  Then 
G is n eccentric. 
 
Case 1: d−r+1 = 1. 
In this case, G is self-centered, Gg is complete and henceGg is totally disconnected. 
 
Case 2: d−r+1 = 2. 
In this case, G is bi-eccentric. 
 
Sub case 2.1: r =1, d = 2. 
Gg is complete and hence Gg is totally disconnected. 
 
Sub case 2.2: r >1. 
Here, different cases arise. If there exists vr+1 ∈ Er+1 such that vr+1 is adjacent to all 
central vertices in G, then inGg, the point vr+1 is isolated. Similarly, if there exists 
vr+1 ∈ Er+1 such that vr+1 is not adjacent to exactly one vertex of Er in G and all other 
vertices in Er+1 are adjacent to vr thenGg has K2 as a component. 
 If G has only one central vertex, then it is adjacent to at least two vertices of 
Er+1 in G. Hence, those two vertices are always isolated inGg. Hence if G has a 
unique central vertex,Gg is disconnected. If cr = 2, then let Er = {vr, vr′}.  There 
exists vr+1, vr+1′ ∈ Er+1 such that vr is adjacent to vr+1 and vr′ is adjacent to vr+1′. 
Suppose vr+1′ is not adjacent to vr, there exists K2 as a component, otherwiseGg has 
K1 as a component. Therefore, cr must be at least three forGg to be connected. Also, 
each vertex of Er+1 is adjacent to at most cr−2 vertices of Er. When G satisfies these 
conditionsGg is connected and eccentricity of vertices ofGg lies between 2 and 4. 
 
Case 3: n = d−r+1 = 3. 
V(G) = Er ∪ Er+1 ∪ Er+2. InGg, d(vr, vr+2) = 1 for vr in Er and vr+2 in Er+2 and    d(vr, 
vr+1) ≤ 2 since each vr+1 is not adjacent to at least one element in Er+2.  Also, d(vr, vr′) 
= 2, since vr, vr′ is adjacent to every element of Er+2. Thus, inGg, e(vr) = 2 for vr in 
Er. Also inGg, d(vr+1, vr+2) ≤ 3 if vr+1 and vr+2 are adjacent in G. (since vr+1 vr+2′ vr 
vr+2 is a path inGg) and d(vr+1, vr+1′) ≤ 4 and d(vr+1, vr+1′) = 4 if vr+1, vr+1′ are adjacent 
to all the elements of Er. Hence e(vr+1) ≤ 4 inGg. Similarly, d(vr+2, vr+2′) ≤ 2 and 
d(vr+2, vr+1) ≤ 3. Hence,Gg is connected and eccentricity of each vertex ofGg lies 
between 2 and 4. That is, 2 ≤ e(v) ≤ 4 for v ∈ V(Gg). 
 
Case 4: n = d−r+1 ≥ 4. 
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In this case, eccentricity of each vertex inGg is two. Hence, Gg is self-centered with 
diameter two, when n ≥ 4. 

Summarizing all these results, we obtain the following theorem. 

Theorem 2.8 Let G be a connected (p, q) graph. Then (1) If G is self-centered or bi-
eccentric with radius one thenGg is totally disconnected. (2) If G is bi-eccentric 
with radius greater than one and G contains at most two central vertices, then Gg is 
disconnected. (3) If G is bi-eccentric with radius greater than one and G has more 
than two central vertices thenGg is connected if and only if each vertex of Er+1 is 
adjacent to at most cr−2 vertices of Er. Also whenGg is connected, 2 ≤ e(v) ≤ 4 for v 
∈ V(Gg). (4) If G is tri-eccentric, thenGg is connected and 2 ≤ e(v) ≤ 4 for v ∈ 
V(Gg). (5) If n = d−r+1 ≥ 4,Gg is self-centered with diameter two. 
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