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ABSTRACT

In this paper, we develop an empirical Bayes (EB) test by using the kernel-type density
estimation in the case of identically distributed and positively associated (PA) samples.
Given some suitable conditions, the asymptotically optimal property and the
convergence rate of the EB test are obtained. Furthermore, it is proven that the
convergence rate can arbitrarily approach to o,!y. Finally, an example about the main
results of this paper is given. This example shows that the rationality of the conditions
in theorem.
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convergence rate.

1. Introduction
We consider the Problem of testing the hypothesis H,:0<6, <> H,:0>6, ina

positive exponential family with the distribution density
S(x[0)=u(x)C(O)exp(-0x)] ,,,0 >0 (1.1)

where 6, is a known positive constant,u(x)is known positive and continuously and
non- decreasing function for x > 0, 7(A4)is the indicator of the set A. the sample space
1SQ={x:x>0}.

The loss function is defined to be
L(8.d;) = (1=i)(O ) g»g,, + (6 — ) (geg, s i = 0.1 (1.2)

where D={dy d;} denotes action space with d; accepting H .
Assume that the parameter & has an unknown non-degenerate prior G(8) with

support on ®:~{0>O:J'Q f(x|&)dx=1} . Hence the marginal probability density

function (pdf) of random variable X is f (x):J.G f(x|0)dG(6) =u(x)ys(x) , where
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Y (x) = j@ C(0) exp(-0 x)dG(0) . Let

6(x) = P(accept H, | X = x) be the randomized decision rule, then the Bayes risk of
5(x) is

RGO = [ [ 1L(0.d)5(0) +[1= SIL(O.dy)} /(| 0)dG(O)d
= [, 68— Bo (N (x)dx + C = [ SuxIme () +Cg

where Cg = [ (0-00)11956,dG(0),  Pa(x)=E@| X =x) = a(x)/ 76(x)

mg(x) = 60yy6(x) —ag(x) (1.3)

ag(x) = j@ecw) exp(—x0)dG(6) (1.4)

Since B9 (x) =[E(@| X =x)* —E(@* | X =x)=Var(0| X =x)<0for all x, Sg(x)is
non-increasing and continuous function. We assume that lin(l) B (x)> 6, > lim B (x) .
xX—> X—>0

If the prior distribution G(¢) is non-degenerate, then under above assumption
Ps(x) is strictly decreasing in x . Thus there exists a point g, such
that B, (ug) =6y, B (x) <6, for x> u; and B;(x) >0, for x<u, . Therefore, the
Bayes test d; can be written

Og(x)=1if x<pzandSz(x)=0 if x> u; (1.5)
where 4 is called the critical point of the Bayes testd;. Thus,S;is a monotone
Bayes test. However, Bayes test §;is unavailable to use since the prior G(6) is
unknown. As alternative we can use the empirical Bayes (EB )approach to obtain an
EB test.

The EB approach has been studied extensively in the literature. For example
literature [1],[2] discussed one-tail testing problem for the one-parameter continuous
exponential family JOwhile [3]considered nonparametric EB solution to two-tail test in
the exponential family. Also, literature [4~11] studied empirical Bayes test for the
parameter for some distribution family. Differing from the past many works[we
consider the monotone empirical Bayes test for the parameter of a exponential family
using PA samples.

The paper is organized as follows. In section 2, we proposed a monotone
empirical Bayes test based on the NA samples. We investigated the asymptotic
optimal and obtained a rate of convergence of order in Section3. An example with
respect to the main result in this paper is given in Section 4.

2. Construction of EB Test
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Firstly, we introduce the PA sequence which was first defined in [12].

Definition 1. Random variables X,---,X, (n>2) are said to be positively
associated (PA), if for every pair of disjoint nonempty subsets 7; and 7, of

set {1,2,3,--,n} , Cov(fi(X,i€Ty), (X, jeTy) 20, Wwhere f; and f, are increasing or

decreasing for every variable such that this covariance exists. Random variable
sequence {X;} (i =1,2,3---) are said to be PA, if for every natural number n>2 ,
X,,-, X, , are positively associated.

In the empirical Bayes framework, let X,,---, X,,X,,; (X,,, =X) are PA samples
with the same marginal density function f(x). Usually, we call X,,---,X, the past
samples, X denotes the present sample. In this paper, Spand S;denote positive integers
respectively, and {X,:n>2} are identically distributed and weakly stationary PA
sequence, f(x) is a density function of X;.The covariance of {X,:n>2} satisfies
condition:

(A) i\COV(Xl,Xj)|<oo

j=1

Based on X, , X, and X , we define the estimation

of f(x)and o (x) , g5 (x), 75 (x) , mg(x) respectively

I < X, —x 1 < X, —x
fn(x)_%;KO( " ) (2.1) 7"(X)__”hn,~§K0( n ) u(X;) (2.2)
1 & X —x
an(x):WZKl( lh Y u(X;) (2.3)  m,(x)=6y,(x)—a,(x) (2.4)
n i=1 n

where 0<h, -0, nh® — o (n— ), K;(x)is Borel-Measurable bounded function

vanishing outside the interval [0,1],]|K;(x)|< B for x€[0,1] (i=1,2) , and K;(x)
satisfy following conditions:

19 izj,
(B) J-;x./ki(x)dx: 0, i#j,j=01--,8 —1,
B;, Jj=S5;.

(C) K(x) 1is differentiable on R, not including finite set E,

2

1
SUP ver,E, | KV (x)[ge<o.

where B and B, are constants .In the following, we assume that
G0 er(r,r) ={G: E(0) <o, n<pg<r}y , where n,r, are known
constants( 0<r <r, <o ). Then, it follows from the Bayes test 5, (x) (1.5), and
r < ug <r,,we propose the EB test as follows
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5,(x):{1’ f(x<n) or(h<x<ryand m,(x)<0, 2.5)

0, if(x>n) or(n<x<randm,(x)>0.

Hence, the Bayes risk of §,(x) is R(5,(x),G(0)) = IQu(x)mG(x)E[é‘n (x)]dx + Cg ,where E

denotes the expectation with respect to the joint distribution of (X,,---,X,) .By
definition, an EB testd, (x)is said to be asymptotically optimal with respect to the
prior distribution G, if R(5,(x),G(9) > R(S;(x),G(@) , (n—o). If for

some g >0, R(5,(x),G(0)) - R(S(x),G(0)) =0(n~?), then the convergence rate of the EB

test 5, (x) is denoted by (n™ 7).

3. The Properties of EB Test
In this paper, M ,M,,M,,--- always stand for some different positive constant that

do not depend onr, they can take different values while appearing even within the
same expression, and S S,S,,S; denote different positive integer. R; stand for
i dimension real spaces. In order to obtain the proper- ties of EB test s, (x), we need
the following lemmas.

Lemma 1. Let X and Y be PA variables with finite variance, then for any
differentiable functions g,and g, [Jwe have

[cov(g1 (). (V)] < sup g (X[supy g8 (] cov(x, 1) 3.1)

When g, and g, are not differentiable on finite or countable set £j and Eg respectively,

We have

lcov(g, (40, 22V < 5Py e @fsup, 2o (V]Cov(X,¥) (3.2)
Proof. The proof of (3.1) see lemma 4.2 of [13]. When g, and g, are not

differentiable on finite or countable set £, and EZ respectively, the integrate value of

cov(g,(x),g,(»)) on product space (R, —Ey)x (R, —E,)is equivalent onR,, so the

proof of (3.2) is similarly to (3.1).

Lemma 2. Let X,,--- X, ,---, be identically distributed and weakly stationary PA
sequence, y,(x)ande,(x)be defined by (2.2)and (2.3). If conditions (A)--(C) hold,
u(x) is non-decreasing function for all xeQ, y;(x)is continuous function and
sup,.ol7e(x)]= M, <o, then we have
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(1) Varly, (x)] < M (nhu(x))™ + M (nh)™! (3.3)
(2) Varla,(x)]< M (nhu(x)) ™ +M(nh))™ (3.4)

X

) u(X)]

Proof. (1) var[y,,(x)]=(nhn)*2§":Var[K0( p

i=1 n

+2(nh,) Y Cov(Ko(X;l_ %) u(X,),Ko(

1<i<j<n n n

Xj—x

Vu(X,) =T, +T, (3.5)

Since u(x) 1is non-decreasing function and y;(x) is non-increasing
function,| Ky(x)|< Band  sup,.,[yq(x)]= M, <, we have
T, = (nh,) S Varl Ko (2 : “5) Ju(X)] = (nh2) Var[K o (
i=1
X, —x

X, —x

)/ u(X))]

n n

< (nh) ™ E[Ko(

) (X)) < (nh,u(x)™ j; K5 )y (x+ hy)dv < M (nh,u(x))™" (3.6)

n

Let g,(x,y) = Ko(=

h_y )/u(y) . From the condition (B), we know the partial

n

derivative of g, (x,y) is existence on g, - £, ,then from lemma 1 and the condition (C),

we have

X, —x X/—x

) u(X;),Ko( }'Z

T, =2(nh,) Y. Cov(K,(

I<i<j<n n

)/ u(X)

n

<2(nh,)? Y| Cov(g,(x, X,),2,(x, X))

1<i<j<n
<2nh,)? Y {sup(g,(x, y)}zcov(X,.,Xi)SMln‘zh;“nicOv(X,.,Xi)SM(h,‘jn)-‘ (3.7)
I<i<j<n Y i=1
Substituted (3.5)by (3.6)and (3.7), the proof of (1) is completed. Similarly, the proof
of (2) can be completed.

Lemma 3. If the conditions of lemma 1 hold, and y;(x)is the/times differentiable

for all x e Q. Then for all/ >1, we have

(1) 1E[y, ()= 76 (x) €1 O(S,x), (2) | Ela,(x)]-ag(x) [ hyOS +1,x),
(3) | Elm, (x)]-mg(x) < B (6, + DO(x) .

where  Q(x) = max(O(S, x), O(S +1,x)), O(t,x) = B[(t + 1)!]”" j@e‘C(e) exp(-0x)dG(6) .
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Proof. By the Taylor’ s theorem and the condition (A), we have

Ely, ] = [ Korg(x+ hy)dv = [ CO)exp(-0)[ Ky()exp(-0h,v)dvdG(0

(=h)% 0% 1 s
= j@ CO)exp(-00)[1 41— jo v Ko (v) exp(—6 h,v)dv]dG(0)
!

—h )5 .
=y (x)+ %j@eso C(0)exp(-0 x)[j;vso Ko(v)exp(-0 h,y"vldG(6)
0.

wherev" €[0,v], Since|K,(v)|<B and 0<exp(-6h,v )<1, we have

| B (0] =76 (0) I (S il j 6 C(6) exp(~0 x)dG(8) = h," (S, x) - (3.8)

Similarly, since |K,;(v)|[<B and 0<exp(-@h,v )<1 , where v €[0,v] .We have

| Elat, (0] - a6 ()= |L [0 CO)exp(-0 [ v Ky () exp(-0h,y" v1dG ()|

S
(Sh+1)' j 0% C(0) exp(-0x)dG(0) < b3 ' O(S,, x) (3.9)
1

Note that for each positive integer S , O(S;,x) is decreasing in x . We
choose S, =S, +1=S+1, from (3.8)and (3.9), we obtain
| Ely, (0] = 76(x) € 7,0(8,%) , | Ela, ()] - a6 (x) [< A7 O(S +1,x) .

Define Q(x)=max(Q(S,x),0(S +1,x)) .Since both O(S,x) and Q(S+1,x) are
non-increasing function for x> 0[] Q(x)is also non-increasing for x> 0.1t follows

that
| E[m,, (x)] = mg (x) [< Oyl O(S, x) + hy O(S +1,x) < iy (8, +1)QO(x) (3.10)

Since ug(x)e(r,r,),0(x)is non-increasing function forx >0 Q) = Q(x) for all

x> . Thus
7,(x), «,(x) and m,(x) are asymptotically unbiased and consistent estimators of

v6(x), ag(x) and mg(x) respectively. When n is larger enough, we have
B (1) =0y > 20, (0, + DO 76 (1) s Oy — B (r2) > 283 (B, +DO(12) 76(r,) - Since fg(x) is

a continuous, strict decreasing function and p;(u;)=6, , there exist two

points u and  pg,, 1 < U < fgy <7, such that
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Bo () — 6y =2k 0y +DOM) /6 (6) » 0y — B (tg2) > 2h; (6, + DO(y) 76 (1) . (3.11)

Thus, we have R(S,(x),G(0))— R(55(x),G(0)) =W1+W2+W3+W4, where

Wl = J‘/lm

4l

P{m,(x) < 0,mg(x) > Obu(x)mg(x)dx ,

2= [ Plm, (x)> 0.mg (¥) < O3u(x)76 (¥)[ B (x) ~ 6y Jds

W3 = J'#Gz

e Pim,, (x) <0,mg(x) > 0ju(x)y ()0 — B (x)]dx >

Wa= L’; P{m,, (x)> 0,mg(x) < Oyu(x)[—mg (x)]dx

Theorem 1. Suppose that the EB test 5, (x) is defined by (2.5), and X;,--- X

identically distributed and weakly stationary PA sequence. If conditions (A)--(C)
hold, u(x)is a positive and continuous non-decreasing function for allxe Q, and
Ef<x, ys(x) is the [ times differentiable for all xeQ (/=1) .Then, for

-+, 18

n o

each G(0) € 7(r,r,) , when lim h, =0,lim

n— ""n

s MhS =0, we have

1imn—>oo R(é‘n (X), G(e)) = R(é‘G (x),G(H))
If b, =n"""5%® | then R(5,(x),G(9)) - R(S5(x),G(@)=0n "5y . Where S>1, Sis a

positive integer.

Proof. Since y;(x)is a decreasing function for all x e QO , we have

Bo () =0y 2 B(ug) — 0y =0for xe(ug,ug), (3.12)
0<6) = Bo(ug) <6y — Bs(x) <0y — Bo(ugy) for xe(ug, psr) -

Thus, we have

W25 [ 6 (I (B +DQ(1)/ 76 (6 )dv < 213 (By +1DQ(1) 76(g) = Oy )

W3 < [ 2u(x)y (OB 0 + DO 76 (r)dx < 285 (By + DO/ 76(12) = Ohy)

Forall xe(n,uq),wehave mg(x)=ys(x)[0, — Bs(x)]<0. From lemma 3 and (3.11),

we have

Em,, (x) < mg(x)+(0y + )i O(x)

<6 () + 76 N0, ~ B a1+ (0, + DRSO =S me () <0 (3.13)

For all xe(ug,,rn), we have mg(x)=yq(x)[6, — Bg(x)]>0 .Tthus by lemma 3 and
(3.11), we have
Em,,(x) > mg (x) = (0 + D, O(x)
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> mg(3)+ 3760 = o)1~ (0 + DRS00 = g (>0 (.14)

From lemma 2, we have

Varlm, (x)]=Var{6yy,(x) - a,(x)] < 20 Varly, (x)]+ 2Var{a, (x)]

< Moy (x)/ nhu(x)+ M,/ nh} + Myy(x)/ nhiu(x)+ My /nhS = O(nh®)™" (3.15)
For each x € (ug,,7) , by (3.14),(3.15) and Tchebychev inequality, we have

was[® P(Im, ()= Em,(x)}> %mc (DM (k) () =mg ()]

<[ K 24 M (nhg)  u()[=mg (x)ldx < M (nh) ™ | ? [u(x)/ mg (x)ldx = O(nh®)™
He2  mg (x) HG2

SimilarlyCfor x e (1, 415,) by (3.13), (3.15), we can get

W< M by [ u(x) Img (x)dx = O(nhf) ™
Ul
When 0 <k, — 0(n — o), lim, ,, nh® =, we have

lim, ,, R(5,,G)—R(3;,G)=lim, , (WI+W2+W3+W4)=0

n—»0
This shows that lim, ,, R(5,,G) = R(65.G) . If h, =n"""5*9 then

R(5,,G)-R(6;,G)=0(n~5'%"5) , where S is a positive integer (S >1).
Now, by using the conditions of theorem, we can show that if S is large enough, then

the convergence rate of the empirical test also approaches to O(n™").

4. Example
Let /(x| 60)=0exp(—6x)I(x >0), where 8> 0,u(x)=1,C(d)=0 . The prior density

function of @ is g(0) =40 exp(-20)I 4., -Then by computation, we obtain that

76(x)=8/2+x)’, as(x)=24/2+x)* . Obviously, u(x)=1is a non-decreasing

function for allx>0, and E6 <, y;(x)is the!times differentiable for allxeQ
(I =21). Therefore, the conditions of theorem are satisfied. It is show that the results of

this paper are obtained.
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