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ABSTRACT

In this paper, we study Lie and Jordan structures in simple I'-rings of characteristic
not equal to two. Some properties of these I'-rings are developed.

1. Introduction

The concepts of a ['-ring was first introduced by Nobusausa [7 ] in 1964.
He studied wedderburn’s Theorem for I'-ring with minimum one sided ideals. Now
a day his I'-ring is called a I'-ring in the sense of Nobusausa. This I'-ring is
generalized by W.E. Barnes [ 1 ] in a broad sense that served now-a-day to call a
[-ring.

J. Luh [3 ] studied on primitive [-rings with minimal one-sided ideals.
Simple I'-rings are also studied by him. S. Kyuno [5] worked on the structure of a
I-ring with minimum condition. He obtained various results of the semi-prime
I"-rings.

In classical ring theories I. N. Herstein [4 ] studied the Lie and Jordan
structure in simple rings.

In this paper, we generalized the results of I. N. Herstein [4 ] into Lie and
Jordan structures in simple ['-rings. We developed some characterizations of this
[-rings.

2.1. Definitions
Gamma Ring. Let M and I" be two additive abelian groups. Suppose that there is a
mapping from M x I' x M — M (sending (X, o, y) into xay) such that
1) (x +y)a z=x0z+ yoz
X (o + B)z=x0z + xPz
xay + z) = xay + X0z
i) (xay)pz =xa(yBz),
where X, y, zeM and o, Bel’. Then M is called a I'-ring.
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Ideal of I'-rings. A subset A of the I'-ring M is a left (right) ideal of M if A is an
additive subgroup of M and MT'A = {coa | ceM, a.el’, acA}(AI'M) is contained in
A. If A is both a left and a right ideal of M, then we say that A is an ideal or two sided
ideal of M.

If A and B are both left (respectively right or two sided) ideals of M, then A + B
= {a+Db|aecA, beB} is clearly a left (respectively right or two sided) ideal, called
the sum of A and B. We can say every finite sum of left (respectively right or two
sided) ideal of a I'-ring is also a left (respectively right or two sided) ideal.

Matrix Gamma Ring. Let M be a I'-ring and let M,,,, and T, ., denote, respectively,
the sets of m x n matrices with entries from M and set of n x m matrices with entries
from I', then My, is a I', ;, ring and multiplication defined by
(2)(vi)(byj) = (cy), where Cj; = > Zaipy qu gi- fm=n,then M, isa [I'ring.

P q

Identity element of a I'-ring. Let M be a I'-ring. M is called a I'-ring with identity
if there exists an element eeM such that aye = eya = a for all acM and some yel'.

We shall frequently denote e by 1 and when M is a I'-ring with identity, we
shall often write 1eM. Note that not all ['-rings have an identity. When a ['-ring has
an identity, then the identity is unique.

Nilpotent element. Let M be a I'-ring. An element x of M is called nilpotent if for
some yeT, there exists a positive integer n = n(y) such that (xy)"x = (xyxy...yxy)x = 0.
Nilpotent ideal. An ideal A of a I'-ring M is called nilpotent if (AT')"A = (ATAT..
...... 'AT)A = 0, where n is the least positive integer.

Division gamma ring. Let M be a I'-ring. Then M is called a division I'-ring if it
has an identity element and its only non zero ideal is itself.
Simple I'-ring . A -ring M is called a simple [-ring ift MI'M = 0 and its ideals are {0} and M.
Center of a I'-ring. Let M be I'-ring. The center of M, written as Z is the set of
those elements in M that commute with every element in M, that is,

Z={meM | myx = xym for all xeM and yel'}.

3. Lie and Jordan structures

In this section we have developed some characterizations of Lie and Jordan
structures in simple I'-rings.

3.1 Theorem. Let M be a I'-ring and 0 = P a right ideal of M. Suppose that, given
aeP, (ay)"a=0, yeI for fixed integer n; then M has a non-zero nilpotent ideal.

Proof. The argument we use is a variation of one given by Levitzki. We go by
induction on n.
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Let a # 0 be in P satisfying aya = 0; let A = al'P. Suppose for the moment
that A # 0. If xeM then [(a—i—a;oc)}/]n(a—i-a;/x)zo, since it is in P, hence an

expansion we get [(ajx)y |™"(ax)ya =0. Thus [(ayx)y]™'ajx TA =0. Let T =
{xeA| xI"A = 0}; of course, T is an ideal of A. Moreover, as we have just seen, y in
A implies that (yq()nf1 yeT. Therefore A = % every element satisfies

(yy)nfly = 0. By our induction hypothesis A hasa nilpotent ideal U=#0.LetU
be its inverse image in A; since ((_]T)k(_]=0, (UF)kU c T, hence
(UN)*'U c Tr4 =0 . Also, since U #0,U¢T whence U SUT 4#0 . But
then UT'A= UT'al'P#0 is a nilpotent right ideal of M.

Suppose then that acP, aya = 0 implies that al'P = 0. For any xeP, since
(xy)'x=0, we have (xy) 'xy(xy)'"'x=0and so (xy)'"'xI'P=0.
Let; W={x € P|XFP =0} W is an ideal of P. If W = P then PI'P = 0 and would

provide us with a nilpotent right ideal. If W = P then in P = % , (X}/)“ x=0;

our induction gives us a nilpotent ideal V £0in P . If V is the inverse image of \2

in P then VI'P # 0 — V and is nilpotent since V is. Again we have seen that M must
have a non-zero nilpotent right ideal.

If M has a non-zero nilpotent right ideal it has (almost trivially) a non-zero
nilpotent ideal. This proves the theorem.

Given any I'-ring M we can induce on M, using its operations, two new
structures, the Lie structure and the Jordan structure by defining the new products [x,
yle = xay - yax and (%, y), = Xay + yox for every, o€l respectively. We propose
to investigate the relationship between the associative structure of M and those
induced Lie and Jordan structures.

We say that a subset A of M is a Lie sub-I'-ring of M if A is an additive
subgroup such that for a, b in A, ayb - bya must also be in A for all yel'. Again a
subset A of M is a Jordan sub-I"-ring of M if A is an additive subgroup such that for
a, bin A, ayb + bya must also be in A for all yeI.

3.2 Definition. Let A be a Lie sub-I"-ring of M. The additive subgroup UcA is to
said to be a Lie ideal of A if whenever ueU, a€A, and a.€I then [u, a], = uaa -
aowu is in U. Again, let A be a Jordan sub-I'-ring of M. The additive subgroup
UcA is to said to be a Jordan ideal of A if whenever ueU, acA, and ael” then
(u, a), =uoa +aowu is in U.

Our first objective will be to determine the Lie and Jordan ideals of the I'-
ring M itself in the case when M is restricted to be a simple I"-ring.
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We begin with the Jordan ideals of M, which we a good ideal easier to
characterize.

3.3 Theorem. IfU isa Jordan ideal of M then for all a, beU, a.el” and xeM,
(aab + baa) ax - xa(aab + baa) eU.

Proof. Since acU, ael’, for any xeM, ao(xab - bax) + (xab - bax)a a in U. But
ao(xab - bax) + (xab - bax)oa = {(aox - xaa)ab +ba (aox - xaa)} + {xo(acb +
baa) - (acb + baa)ax}.
The left side and the first term on the right side are in U, hence xa(aab + baa) -
(aab + baa)ax is also in U, proving the Theorem.

From this we now obtain the following Theorem :

3.4 Theorem. Let M be a I'-ring in which 2x = 0 implies x = 0 and suppose further
that M has no non-zero nilpotent ideals. Then any non-zero Jordan ideal of M
contains a non-zero (associative) ideal of M.

Proof. Let U # 0 be a Jordan ideal of M and suppose that a, beU. By Theorem 3.3,
for any xeM, ael’ xac - caxeU where ¢ = aab + baa. However, since ceU, xoc +
coxeU. Adding we get 2xaceU for all x, hence for yeM, (2xac)ay +
ya(2xac)eU. Since 2yoxaceU we obtain 2xocayeU, that is 2MI'cI'McU. Now
2MTI'cI'M is an ideal of M so we are done unless 2MI'cT’'M = 0. If 2MI'cI'M = 0, by
our assumptions MI'cI'M = 0 and so MI'cI’'MI'c = 0. Since M has no nilpotent ideals
this forces ¢ = 0, that is, given a, beU then aab + baa = 0.

Let 0 # aeU; then for xeM, ael’, b = aax + xaaeU hence ac(aax + xoa)
+ (aox + xaa)oa = 0. That is, acaax + xaaoa + 2aaxoa = 0.Now for acU, 0 = aca
+ aca = 2aca whence aca = 0. The top relation the reduces to 2aoxaa = 0 for all
xeM, ael and so al'MI'a = 0. But then al'M # 0 is a nilpotent right ideal of M,
contrary to assumption. In other words, we have shown that U contains a non-zero
ideal of M.

3.5 Corollary. If M is a simple I'-ring of characteristic # 2 then M is simple as a
Jordan I"-ring.
We now turn to the case of the Lie ideals of M.

3.6 Definition. If A, B are subsets of M then [A, B]r is the additive subgroup of M
generated by all aab - boa with a, beB and ael’.

3.7 Lemma. Let M be a I'-ring with no non-zero nilpotent ideals in which 2x = 0
implies x = 0. Suppose that U # 0 is both a Lie ideal and a sub-I'-ring of M. Then
either Uc Z or U contains a non-zero ideal of M.
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Proof. Let us first suppose that U, as a ['-ring, is not commutative. Then for some x,
yeU, yel, xyy —yyx #0. For any meM, all eI, xB(yym) — (yym)Bx is in U that is
(xyy — yyx)Ppm + yp(xym — myx) is in U. The second member of this is in U since
both y and xym — yyx are in U (since U is both a Lie ideal and sub-I"-ring). The net
result of all this is that (xyy — yyx)TMcU. But then for m, se M and a, BT, ((xyy —
yyx)am)Bs — sP((xyy — yyx)am)eU leading to MI'(xyy — yyx)[McU. We have now
shown that the ideal MI'(xyy — yyx)I'M is in U. If MI'(xyy — yyx)I'M = 0 then
MI'(xyy — yyx)ITMI'(xyy — yyx)I'M = 0 contrary to assumption. We have shown that
the result is correct if U as a sub-I"-ring of M is not commutative.

So, suppose that U is commutative; we want to show that it lies in Z. Given
aeU, xeM then ayx — xyaeU, so commutes with a. Now for x, yeM, ay(ay (xyy) —
(yyx)ya) = (ay(xyy) — (xyy)ya)va. Expanding ay(xyy) — (Xyy)va as (ayx — xya)yyy +
xy(ayy — yya) and using that a commutes with this, with ayx — xya and with ayy — yya
yields 2(ayx — xya)ay (ayy — yya) = 0 for all X, yeM and a.el’. Since 2m = 0 forces
m = 0 we obtain (ayx — xya)a (ayy — yya) = 0. In this put y = ayx, this results in (ayx
— xya)[MI" (ayx — xya) = 0. Since M has no nilpotent ideal we conclude that ayx —
xya = 0 and so, a must be in Z.

Note that in the latter part of the proof of Lemma 3.7 we have also proved
the following sub-lemma:

3.8 Sub-lemma. Let M be a I'-ring having no non-zero nilpotent ideals in which
2x = 0 implies that x = 0.If acM commutes with all ayx - xya, xeM and yeT, then a
isin Z.

Lemma 3.7 Immediately implies the following theorem :

3.9 Theorem. Let M be a simple ['-ring of characteristic # 2. Then any Lie ideal of
M which is also a sub-I"-ring if M must either be M itself or contained in Z.

3.10 Definition. If U is a Lie ideal of M let T(U) = {xeM | [x, M]-cU}.

3.11 Lemma. For any ['-ring M, if U is a Lie ideal of M, then T(U) is both a sub-I"-
ring and a Lie ideal of M; moreover UCT(U).

Proof. Since U is a Lie ideal of M, UcT(U); since [T(U),M]r cUCT(U), T(U) must
certainly be a Lie ideal of M.

Now suppose that a, beT(U), meM. Then (ayb)ym — my(ayb) ={ay(bym) —
(bym) ya + {by(mya) — (mya)yb}, so since a, beT(U), the right side is in U.
Therefore [ayb, M]r-cU that is aybeT(U).
We now prove the following theorem :
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3.12 Theorem. Let M be a simple I'-ring of characteristic # 2 and let U be a Lie
ideal of M. Then either UcZ or Uo[ M, M]r.

Proof. By Theorem 3.9 and Lemma 3.11, since T(U) is both a sub-I'-ring and a Lie
ideal of M, either T(U)cZ or T(U) = M. If T(U) = M then by its very definition [M,
M]r cU; if T(U)cZ, since UCT(U), we obtain U c Z.

3.13 Corollary. If M is a non-commutative simple I'-ring of characteristic # 2 then
the sub-I"-ring generated by [M, M]r is M.

Proof. Any additive subgroup containing [M, M]r is, trivially, a Lie ideal of M.
Hence the sub-I'-ring generated by [M, M]r is a Lie ideal, thus by Theorem 3.9, it
equals M or is in Z. If it is in Z then [M, M]r cZ. Thus for acM, a commutes with
all ayx - xya, aeM, yeTI, by the sub-lemma 3.8, we get that acZ, that is, McZ. Since
we assume M to be non-commutative, that is ruled out; hence the corollary.

We now should like to settle the problem even when M has characteristic 2.
Note that the characteristic of M has not entered into the discussion in the passage
from Theorem 3.9 on. So we ask : when in characteristic 2, does Theorem 3.9 fail ?

If certainly fails in F,, the matrix gamma ring of all 2 by 2 over F, a I'-field

ab
of characteristic 2 for U= {( ]

a,b GF} is a Lie ideal and sub-I"-ring of M which
b a

is neither in Z nor does it equal M. We aim to show that this is, effectively, the only
counter-example.

Suppose that M is a simple I'-ring of characteristic 2 and that U is a Lie
ideal and sub-I'-ring of M, U # M and U & Z. As in the proof of Lemma 3.7 we
obtain that U, as a sub-I'-ring of M, must be commutative. That is, given u, veU
thenuyv + vyju=0, yerl.

Let aeU; then ays + syaeU for all seM, yel hence ay(ays + sya) = (ays +
sya)ya. This says that ayacZ. Since for any meM, aym + myaeU we also have that
(aym + mya)y (aym + mya)eZ.

If Z = 0 then aya = 0, (aym + mya)y (aym + mya) = 0 from which we get
{(aym)y}? (aym) = 0. But then al'M is a right ideal of M in which every element in
the form {(aym)y}* (aym) is 0; by Theorem 3.1, M would have a nilpotent ideal, that
is , M would be nilpotent, which is impossible for a simple "-ring.

Therefore we may assume that Z # 0 and that there is an element acU, agZ
such that aya # 0 €Z and (aym + mya)y (aym + mya)eZ for all meM, yeTl".

To answer completely what the structure of M must be we prove a
subsidiary Theorem :
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3.14 Theorem. Let M be a simple I'-ring of characteristic 2 and suppose that there
exists an aeM, agZ such that ayaeZ, yel" and [(ayx-i—xya)y]3 (ayx—i—xya)e Z for

all xeM and yeI'. Then M is 4-dimensional over Z.
Before proving the theorem we would like to point out that a more general
theorem actually holds, namely : if M is a simple '-ring with an element a¢Z such

that [(ayx -X m}y] i (a}/x - X}/a) € Z for all xeM then M is 4-dimensional over Z.

Proof of theorem 3.14. If Z = 0 then both aya = 0 and
[(a;«+xya)y]3(a7x+xya)=0 hence

[(a;xx )y]4 (a;/x) = ay[(a;/erX;/a)yF (ayx+xya)yx=0 for all xeM. But then the
right ideal al'M satisfies (uy)4u=0 for all elements ueal'M; by Theorem 3.1, this

is not possible in a simple ['-ring.
Suppose, then that Z # 0, hence 1eM. If aya = 0 then b = a + 1 satisfies byb
=1 and [(b}/X—l—X;xb}yP (b}/)H—X}/b) € Z for all xeM. Therefore we may assume

that aya=p # 0 in Z. Let Z'=Z(\/E ) then M'=M®, #Z' is simple. Moreover, in
M’ we have [(ayx'+x'ya)y]’ (ayx'+x'ya)e Z' forall x'eM".
Since dim M/Z':diml\% , to prove the theorem it is enough to do so in

M'. Also bzAwhere qeZ’, qyq = p satisfies byp = 1 and

[(byx'+xyb)y[ (bjx"+x'yb)e Z . Hence, without loss of generality we may

suppose that acM, agZ, aya =1 and [(ayx—l—xya)’yP (ayx—i—xya) € Z forall xeM.

Now M is a dense I'-ring of linear I'-transformations on a vector space V
over a division I'-ring A (since Z # 0 and M is simple). Since (a + 1)y(a+1)=0,a+
1 # 0, V must be more than 1-dimensiononal over A. Since a # 1 it is
immediate that there is a ve 'V such that v, vya are linearly I'-independent over A.

If for some weV, v, vya and wy(1 + a) are linearly I'-independent over A
then the sub-I'-space V, spanned by these is invariant under a and a induces the

010
linear I'-transformations |1 0 0| on V,, By density of M on V there is an xeM
0 0 1

010 010
which induces |0 O 0| on V, hence ayx + xya induces |1 0 O] on V.
0 0 0 0 0 0
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But [(ayx+xya)y]3(a7x+xya)ez yet does not induce a scalar on V, since it

010
induces |1 0 O] . Thus we have that for all weV, v, vya and wy(1 + a) are line
0 0 O

arly I'-dependent over A. If V is more than 2-dimensional over A, there is a weV
such that v, vya, w are linearly [-independent over A. By the above, wya is in the

010
sub-I"-space V, they span. The matrix of a on V;is 1 0 0. By density
p qr
010
there is an xeM which induces |0 0 O] on V; ; but then ayx + xya induces
0 0 0
010
0 1 0] where [(ajx +xa)y]*(ajx+xya) is nota scalar.
0 p O
Thus we must have that V is 2-dimensional over A. All that remains is to

P q] ; then al'»a = I, where I'; is the set of

show that A is commutative. Let a= (
r s

all 2 x 2 matrices gamma ring over A and I, is the identity matrix. Now we have
ana = Iz.

ThenpqvllvnquIO‘
s )Y ¥ J\I S 0 1
PYuP + qYuP + PVl + qYr PYnq t q¥nq + pYisS + Q¥ s j

Therefore (
Ypp+ SYyD + 1Yl + SY,r Y p+ SYyP +1Y,9 +8Yy,S

B 10
0 1)
Ityields py,,p + gy, p + DYl + qQvyr =1

PYd + QY59 + PYiS +qYpS = IYP + Sy P+ 1Yl +8Y,r = 0
Iy, P+ SYyP +1V,,q + SY,,s = 1. In particular not both p =0 and r = 0.

. 0 t 3
If te A then using X = (0 Oj and [(aF2X+XF2a)F] (aF2X+XF2a)E Z .
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0 t 0t
NOW aF2X+Xr2a =[p qj(’yu ’YIZ j( ] +[ j[’yu ’YI2 J(p q]
r s)\¥ay ¥»/)\0 0 0 O/\yy v )\r s

_ (Wnp + pr PYul + gyt +ty,g + t'Yzz”J
0 Iyl + SYyl

Therefore [(aFZX +xI' 2a)lﬁz]3 (anx +XF2a) € Z. This gives for all teA, 4 times

of (tyzlp + tyzzr) and (ry”t + syzzt) are in Z. If p # 0, then ty,p + ty,,rruns

through as t does, so every xeA would satisfy (XF2 )3x € Z . But a non-commutative

division I'-ring cannot be purely inseparable over its center. This p # 0 implies A is
commutative. Similarly r # 0 implies A is commutative. Since one of these must
hold we get that A is commutative and so M is 4-dimensional over Z.

Since the hypothesis of Theorem 3.14 is precisely the one lead to by the
assumption that Theorem 3.9 (and so Theorem 3.12) was false we obtain.

3.15 Theorem. If M is a simple I'-ring and if U is a Lie ideal of M then either UcZ
or UD[M, M]r except if M is of characteristic 2 and is 4-dimensional over its center,
The theorem has as an immediate corollary the

3.16 Corollary. If M is a simple non-commutative I'-ring then the sub-I'-
ring generated by [M, M]r is M.
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