
Journal of Physical Sciences, Vol. 14, 2010, 77-86 
ISSN: 0972-8791, www.vidyasagar.ac.in/journal 
Published on December 24, 2010 

 
Lie and Jordan Structure in Simple Gamma Rings 

 
A.C. Paul1 and Md. Sabur Uddin2 

  
1Department of Mathematics, University of Rajshahi, Rajshahi –6205, Bangladesh. 

2Department of Mathematics, Carmichael College, Rangpur, Bangladesh. 
Email: acpaulru_math@yahoo.com 

 

Received April 21, 2010; accepted September 12, 2010 
 

ABSTRACT 
In this paper, we study Lie and Jordan structures in simple Γ-rings of characteristic 
not equal to two. Some properties of these Γ-rings are developed.  
 
1. Introduction 

 The concepts of a Γ-ring was first introduced by Nobusausa [7 ] in 1964. 
He studied wedderburn’s Theorem for Γ-ring with minimum one sided ideals.  Now 
a day his Γ-ring is called a Γ-ring in the sense of Nobusausa. This Γ-ring is 
generalized by W.E. Barnes [ 1 ] in a broad sense that served now-a-day to call a    
Γ-ring. 
 J. Luh [3 ] studied on primitive Γ-rings with minimal one-sided ideals. 
Simple Γ-rings are also studied by him. S. Kyuno [5] worked on the structure of a   
Γ-ring with minimum condition. He obtained various results of the semi-prime       
Γ-rings.  
 In classical ring theories I. N. Herstein [4 ] studied the Lie and Jordan 
structure in simple rings. 
 In this paper, we generalized the results of I. N. Herstein [4 ] into Lie and 
Jordan structures in simple Γ-rings. We developed some characterizations of this    
Γ-rings.  
 
2.1. Definitions 
Gamma Ring.  Let M and Γ be two additive abelian groups. Suppose that there is a 
mapping from M × Γ × M → M (sending (x, α, y) into xαy) such that 
          i)       (x + y)α z = xαz + yαz 
                    x (α + β)z = xαz + xβz 
                    xα(y + z) = xαy + xαz  
         ii)       (xαy)βz = xα(yβz), 
  where x, y, z∈M and  α, β∈Γ.  Then M is called a Γ-ring. 
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Ideal of Γ-rings.   A subset A of the Γ-ring M is a left (right) ideal of M if A is an 
additive subgroup of M and MΓA = {cαa | c∈M, α∈Γ, a∈A}(AΓM) is contained in 
A. If A is both a left and a right ideal of M, then we say that A is an ideal or two sided 
ideal of M.  

       If A and B are both left (respectively right or two sided) ideals of M, then A + B 
= {a + b | a∈A, b∈B} is clearly a left (respectively right or two sided) ideal, called 
the sum of A and B. We can say every finite sum of left (respectively right or two 
sided) ideal of a Γ-ring is also a left (respectively right or two sided) ideal. 
Matrix Gamma Ring. Let M be a Γ-ring and let Mm,n and  Γn,m denote, respectively, 
the sets of m × n matrices with entries from M and set of n × m matrices with entries 
from Γ, then Mm,n is a Γn,m ring and multiplication defined by  
 (aij)(γij)(bij) = (cij),  where ∑∑=

p q
qjpqipij .bγac  If m = n, then Mn is a    Γn-ring.     

 
Identity element of a Γ-ring. Let M be a Γ-ring. M is called a Γ-ring with identity 
if there exists an element e∈M such that aγe = eγa = a for all a∈M and some γ∈Γ. 

We shall frequently denote e by 1 and when M is a Γ-ring with identity, we 
shall often write 1∈M. Note that not all Γ-rings have an identity. When a Γ-ring has 
an identity, then the identity is unique. 
Nilpotent element. Let M be a Γ-ring. An element x of M is called nilpotent if for 
some γ∈Γ, there exists a positive integer n = n(γ) such that (xγ)nx = (xγxγ...γxγ)x = 0. 
Nilpotent ideal. An ideal A of a Γ-ring M is called nilpotent if (AΓ)nA = (AΓAΓ.. 
… …ΓAΓ)A = 0, where n is the least positive integer. 
 
Division gamma ring. Let M be a Γ-ring. Then M is called a division Γ-ring if it 
has an identity element and its only non zero ideal is itself. 
Simple Γ-ring . A  Γ-ring M is called a simple Γ-ring if MΓM ≠ 0 and its ideals are {0} and M. 
Center of a Γ-ring.  Let M be Γ-ring. The center of M, written as Z is the set of 
those elements in M that commute with every element in M, that is,  
 Z = {m∈Mmγx = xγm for all x∈M and γ∈Γ}. 
 
3.  Lie and Jordan structures 

 
In this section we have developed some characterizations of Lie and Jordan 

structures in simple    Γ-rings. 
 

3.1     Theorem. Let M be a Γ-ring and 0 ≠ P a right ideal of M. Suppose that, given 
a∈P, (aγ)na = 0, γ∈Γ for fixed integer n; then M has a non-zero nilpotent ideal. 

 
Proof. The argument we use is a variation of one given by Levitzki. We go by 
induction on n.  
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Let a ≠ 0 be in P satisfying aγa = 0; let A = aΓP. Suppose for the moment 
that A ≠ 0. If x∈M then ( )[ ] ( ) 0xaaaa n =++ γγγx , since it is in P, hence an 
expansion we get ( )[ ] ( ) 0γaxaxa 1-n =γγγ . Thus ( )[ ] 0ΓAx aγxa 1-n =γγ . Let T = 

{x∈AxΓA = 0}; of course, T is an ideal of A. Moreover, as we have just seen, y in 
A implies that ( ) Tyyγ 1n ∈− . Therefore T

AA =  every element satisfies 

( ) 0yyγ 1n =− . By our induction hypothesis A has a nilpotent ideal U ≠ 0. Let U 

be its inverse image in A; since ( ) 0T
k

=UU , ( ) TUΓ k ⊂U , hence 

( ) 0TUΓ 1k =Γ⊂+ AU . Also, since T0, ⊄≠ UU  whence 0≠Γ⊃ AUU . But 
then 0PΓaΓΓA ≠= UU  is a nilpotent right ideal of M. 

Suppose then that a∈P, aγa = 0 implies that aΓP = 0. For any x∈P, since 
( ) 0xx n =γ , we have ( ) ( ) 0xxγxγxγ 1n1n =−− and so ( ) 0Pxxγ 1n =Γ− . 
Let; 0}PxP{xW =Γ∈= W is an ideal of P. If W = P then PΓP = 0 and would 

provide us with a nilpotent right ideal. If  W = P then in W
PP = , ( ) 0xx n =γ ;  

our induction gives us a nilpotent ideal V ≠ 0 in P . If V is the inverse image of V  
in P then VΓP ≠ 0 ⊂ V and is nilpotent since V is. Again we have seen that M must 
have a non-zero nilpotent right ideal. 
 If M has a non-zero nilpotent right ideal it has (almost trivially) a non-zero 
nilpotent ideal. This proves the theorem. 
 Given any Γ-ring M we can induce on M, using its operations, two new 
structures, the Lie structure and the Jordan structure by defining the new products [x, 
y]α = xαy - yαx and (x, y)α = xαy + yαx for every, α∈Γ respectively. We propose 
to investigate the relationship between the associative structure of M and those 
induced Lie and Jordan structures. 
 We say that a subset A of M is a Lie sub-Γ-ring of M if A is an additive 
subgroup such that for a, b in A, aγb - bγa must also be in A for all γ∈Γ. Again a 
subset A of M is a Jordan sub-Γ-ring of M if A is an additive subgroup such that for 
a, b in A, aγb + bγa must also be in A for all γ∈Γ.  
 
3.2 Definition. Let A be a Lie sub-Γ-ring of M. The additive subgroup U⊂A is to 

said to be a Lie ideal of A if whenever u∈U, a∈A, and α∈Γ then [u, a]α = uαa - 
aαu is in U. Again, let A be a Jordan sub-Γ-ring of M. The additive subgroup 
U⊂A is to said to be a Jordan ideal of A if whenever u∈U, a∈A, and α∈Γ then 
(u, a)α = uαa + aαu is in U. 

 Our first objective will be to determine the Lie and Jordan ideals of the Γ-
ring M itself in the case when M is restricted to be a simple Γ-ring. 
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 We begin with the Jordan ideals of M, which we a good ideal easier to 
characterize. 
 
3.3   Theorem.    If U is a Jordan ideal of M then for all a, b∈U, α∈Γ and x∈M,  

(aαb + bαa) αx  - xα(aαb + bαa) ∈U.  
 
Proof.  Since a∈U, α∈Γ, for any x∈M, aα(xαb - bαx) + (xαb - bαx)α a  in U. But  
aα(xαb - bαx) + (xαb - bαx)αa = {(aαx - xαa)αb +bα (aαx - xαa)} + {xα(aαb + 
bαa) - (aαb + bαa)αx}. 
The left side and the first term on the right side are in U, hence xα(aαb + bαa) - 
(aαb + bαa)αx is also in U, proving the Theorem. 

From this we now obtain the following Theorem : 
 
3.4  Theorem.  Let M be a Γ-ring in which 2x = 0 implies x = 0 and suppose further 
that M has no non-zero nilpotent ideals. Then any non-zero Jordan ideal of M 
contains a non-zero (associative) ideal of M. 
 
Proof. Let U ≠ 0 be a Jordan ideal of M and suppose that a, b∈U. By Theorem 3.3, 
for any x∈M, α∈Γ  xαc - cαx∈U where c = aαb + bαa. However, since c∈U, xαc + 
cαx∈U. Adding we get 2xαc∈U for all x, hence for y∈M, (2xαc)αy + 
yα(2xαc)∈U. Since 2yαxαc∈U we obtain 2xαcαy∈U, that is 2MΓcΓM⊂U. Now 
2MΓcΓM is an ideal of M so we are done unless 2MΓcΓM = 0. If 2MΓcΓM = 0, by 
our assumptions MΓcΓM = 0 and so MΓcΓMΓc = 0. Since M has no nilpotent ideals 
this forces c = 0, that is, given a, b∈U then aαb + bαa = 0. 
 Let 0 ≠ a∈U; then for x∈M, α∈Γ, b = aαx + xαa∈U hence aα(aαx + xαa) 
+ (aαx + xαa)αa = 0. That is, aαaαx + xαaαa + 2aαxαa = 0.Now for a∈U, 0 = aαa 
+ aαa = 2aαa whence aαa = 0. The top relation the reduces to 2aαxαa = 0 for all 
x∈M, α∈Γ and so aΓMΓa = 0. But then aΓM ≠ 0 is a nilpotent right ideal of M, 
contrary to assumption. In other words, we have shown that U contains a non-zero 
ideal of M.  
 
3.5  Corollary. If M is a simple Γ-ring of characteristic ≠ 2 then M is simple as a 
Jordan Γ-ring. 
 We now turn to the case of the Lie ideals of M. 
 
3.6  Definition. If A, B are subsets of M then [A, B]Γ is the additive subgroup of M 
generated by all aαb - bαa with a, b∈B and α∈Γ. 
 
3.7  Lemma. Let M be a Γ-ring with no non-zero nilpotent ideals in which 2x = 0 
implies x = 0. Suppose that U ≠ 0 is both a Lie ideal and a sub-Γ-ring of M. Then 
either U⊂ Z or U contains a non-zero ideal of M. 
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Proof.  Let us first suppose that U, as a Γ-ring, is not commutative. Then for some x, 
y∈U, γ∈Γ,  xγy – yγx ≠ 0. For any m∈M, all β∈Γ, xβ(yγm) – (yγm)βx is in U that is 
(xγy – yγx)βm + yβ(xγm – mγx) is in U. The second member of this is in U since 
both y and xγm – yγx are in U (since U is both a Lie ideal and sub-Γ-ring). The net 
result of all this is that (xγy – yγx)ΓM⊂U. But then for m, s∈M and α, β∈Γ, ((xγy – 
yγx)αm)βs – sβ((xγy – yγx)αm)∈U leading to MΓ(xγy – yγx)ΓM⊂U. We have now 
shown that the ideal MΓ(xγy – yγx)ΓM is in U. If MΓ(xγy – yγx)ΓM = 0 then 
MΓ(xγy – yγx)ΓMΓ(xγy – yγx)ΓM = 0 contrary to assumption. We have shown that 
the result is correct if U as a sub-Γ-ring of M is not commutative. 
 So, suppose that U is commutative; we want to show that it lies in Z. Given 
a∈U, x∈M then aγx – xγa∈U, so commutes with a. Now for x, y∈M, aγ(aγ (xγy) – 
(yγx)γa) = (aγ(xγy) – (xγy)γa)γa. Expanding aγ(xγy) – (xγy)γa as (aγx – xγa)γy   + 
xγ(aγy – yγa) and using that a commutes with this, with aγx – xγa and with aγy – yγa 
yields 2(aγx – xγa)αγ (aγy – yγa) = 0 for all x, y∈M and α∈Γ.  Since 2m = 0 forces 
m = 0 we obtain  (aγx – xγa)α (aγy – yγa) = 0. In this put y = aγx, this results in (aγx 
– xγa)ΓMΓ (aγx – xγa) = 0. Since M has no nilpotent ideal we conclude that aγx – 
xγa = 0 and so, a must be in Z. 
 Note that in the latter part of the proof of Lemma 3.7 we have also proved 
the following sub-lemma:  
 
3.8 Sub-lemma.   Let M be a Γ-ring having no non-zero nilpotent ideals in which  
2x = 0 implies that x = 0.If a∈M commutes with all aγx - xγa, x∈M and γ∈Γ, then a 
is in Z. 
 
Lemma 3.7  Immediately implies the following theorem : 
 
3.9   Theorem.  Let M be a simple Γ-ring of characteristic ≠ 2. Then any Lie ideal of 
M which is also a sub-Γ-ring if M must either be M itself or contained in Z. 
 
3.10   Definition.  If U is a Lie ideal of M let T(U) = {x∈M[x, M]Γ ⊂U}. 
 
3.11  Lemma.  For any Γ-ring M, if U is a Lie ideal of M, then T(U) is both a sub-Γ-
ring and a Lie ideal of M; moreover U⊂T(U). 
 
Proof.  Since U is a Lie ideal of M, U⊂T(U); since [T(U),M]Γ ⊂U⊂T(U), T(U) must 
certainly be a Lie ideal of M. 
 Now suppose that a, b∈T(U), m∈M. Then (aγb)γm – mγ(aγb) ={aγ(bγm) – 
(bγm) γa + {bγ(mγa) – (mγa)γb}, so since a, b∈T(U), the right side is in U. 
Therefore [aγb, M]Γ ⊂U that is aγb∈T(U). 
We now prove the following theorem : 
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3.12  Theorem. Let M be a simple Γ-ring of characteristic ≠ 2 and let U be a Lie 
ideal of M. Then either U⊂Z  or U⊃[ M, M]Γ . 
 
Proof.  By Theorem 3.9 and Lemma 3.11, since T(U) is both a sub-Γ-ring and a Lie 
ideal of M, either T(U)⊂Z or T(U) = M. If T(U) = M then by its very definition [M, 
M]Γ ⊂U; if T(U)⊂Z, since U⊂T(U), we obtain U ⊂ Z. 
 
3.13  Corollary.  If M is a non-commutative simple Γ-ring of characteristic ≠ 2 then 
the sub-Γ-ring generated by [M, M]Γ is M. 
 
Proof.  Any additive subgroup containing [M, M]Γ is, trivially, a Lie ideal of M. 
Hence the sub-Γ-ring generated by [M, M]Γ is a Lie ideal, thus by Theorem 3.9, it 
equals M or is in Z. If it is in Z then [M, M]Γ ⊂Z. Thus for a∈M, a commutes with 
all aγx - xγa, a∈M, γ∈Γ, by the sub-lemma 3.8, we get that a∈Z, that is, M⊂Z. Since 
we assume M to be non-commutative, that is ruled out; hence the corollary. 
 We now should like to settle the problem even when M has characteristic 2. 
Note that the characteristic of M has not entered into the discussion in the passage 
from Theorem 3.9 on. So we ask : when in characteristic 2, does Theorem 3.9 fail ? 
 If certainly fails in F2, the matrix gamma ring of all 2 by 2 over F, a Γ-field 

of characteristic 2 for 








∈







= Fba,U

ba

ab
 is a Lie ideal and sub-Γ-ring of M which 

is neither in Z nor does it equal M. We aim to show that this is, effectively, the only 
counter-example.  
 Suppose that M is a simple Γ-ring of characteristic 2 and that U is a Lie 
ideal and sub-Γ-ring of M, U ≠ M and U ⊄ Z. As in the proof of Lemma 3.7 we 
obtain that U, as a sub-Γ-ring of M, must be commutative. That is, given u, v∈U 
then uγv + vγu = 0, γ∈Γ. 
 Let a∈U; then aγs + sγa∈U for all s∈M, γ∈Γ hence aγ(aγs + sγa) = (aγs + 
sγa)γa. This says that aγa∈Z. Since for any m∈M, aγm + mγa∈U we also have that 
(aγm + mγa)γ (aγm + mγa)∈Z. 
 If Z = 0 then aγa = 0, (aγm + mγa)γ (aγm + mγa) = 0 from which we get 
{(aγm)γ}2 (aγm) = 0. But then aΓM is a right ideal of M in which every element in 
the form {(aγm)γ}2 (aγm) is 0; by Theorem 3.1, M would have a nilpotent ideal, that 
is , M would be nilpotent, which is impossible for a simple Γ-ring. 
 Therefore we may assume that Z ≠ 0 and that there is an element a∈U, a∉Z 
such that aγa ≠ 0 ∈Z and (aγm + mγa)γ (aγm + mγa)∈Z for all m∈M, γ∈Γ.  
 To answer completely what the structure of M must be we prove a 
subsidiary Theorem : 
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3.14  Theorem.  Let  M be a simple Γ-ring of characteristic 2 and suppose that there 
exists an a∈M, a∉Z such that aγa∈Z, γ∈Γ and ( )[ ] ( ) Zaxxaγaxxa 3 ∈++ γγγγ for 
all x∈M and γ∈Γ. Then M is  4-dimensional over Z. 

Before proving the theorem we would like to point out that a more general 
theorem actually holds, namely : if M is a simple Γ-ring with an element  a∉Z such 
that ( )[ ] ( ) Zaxxaγaxxa 1-n ∈−− γγγγ  for all x∈M then M is 4-dimensional over Z. 
 
Proof of theorem 3.14. If Z = 0 then both aγa = 0 and 
( )[ ] ( ) 0axxaγaxxa 3 =++ γγγγ hence 

( )[ ] ( )xaγxa 4 γγ = ( )[ ] ( ) 0γxaxxaγaxxaaγ 3 =++ γγγγ  for all x∈M. But then the 

right ideal aΓM satisfies ( ) 0uuγ 4 =  for all elements u∈aΓM; by Theorem 3.1, this 
is not possible in a simple Γ-ring. 

Suppose, then that Z ≠ 0, hence 1∈M. If aγa = 0 then b = a + 1 satisfies bγb 
= 1 and ( )[ ] ( ) Z∈++ bxxbγbxxb 3 γγγγ for all x∈M. Therefore we may assume 

that aγa = p ≠ 0 in Z. Let ( )pZZ =′  then ZMM ′≠⊗=′ Z  is simple. Moreover, in 

M′ we have ( )[ ] ( ) Z ′∈′+′′+′ γaxxaγγγaxxaγ 3 for all x′∈M′. 

Since dim Z
MdimZ

M =′
′ , to prove the theorem it is enough to do so in 

M′. Also q
ab= where q∈Z′, qγq = p satisfies bγb = 1 and 

( )[ ] ( ) Z∈′+′′+′ γbxxbγγbxxbγ 3 γ . Hence, without loss of generality we may 

suppose that a∈M, a∉Z, aγa = 1 and ( )[ ] ( ) Za ∈++ γγγγ xxaγaxxa 3 for all x∈M. 
Now M is a dense Γ-ring of linear Γ-transformations on a vector space V 

over a division Γ-ring ∆ (since Z ≠ 0 and M is simple). Since (a + 1)γ(a + 1) = 0, a + 
1 ≠ 0, V must be more than                    1-dimensiononal over ∆. Since a ≠ 1 it is 
immediate that there is a v∈V such that v, vγa are linearly    Γ-independent over ∆. 

If for some w∈V, v, vγa and wγ(1 + a) are linearly Γ-independent over ∆ 
then the sub-Γ-space V0 spanned by these is invariant under a and a induces the 

linear Γ-transformations 
















100
001
010

on V0, By density of M on V there is an x∈M 

which induces  
















000
000

010
on V0 hence aγx + xγa induces  

















000
001
010

on V0. 
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But ( )[ ] ( ) Z∈++ axxaγaxxa 3 γγγγ yet does not induce a scalar on V0 since it 

induces  
















000
001
010

. Thus we have that for all w∈V, v, vγa and wγ(1 + a) are line 

arly Γ-dependent over ∆. If V is more than 2-dimensional over ∆, there is a w∈V 
such that v, vγa, w are linearly  Γ-independent over ∆. By the above, wγa is in the 

sub-Γ-space V1 they span. The matrix of a on V1 is  
















rqp
001
010

. By density 

there is an x∈M which induces 
















000
000

010
on V1 ; but then aγx + xγa induces 

















0p0
010
010

where ( )[ ] ( )axxaγaxxa 3 γγγγ ++  is not a scalar. 

 Thus we must have that V is 2-dimensional over ∆. All that remains is to 

show that ∆ is commutative. Let 







=

sr
qp

a ; then aΓ2a = I2 where Γ2 is the set of 

all 2 × 2 matrices gamma ring over ∆ and I2 is the identity matrix. Now we have 
aΓ2a = I2.   

Then 







sr
qp










2221

1111

γγ
γγ









sr
qp

= 







10
01

. 









++++++
++++++

sqpsprrrpsp
ssqqqrrpqp

2212211122122111

2212211122122111

sγrγγrγsγγγrγ
qγpγγpγqγpγγpγ

Therefore

 = 







10
01

. 

It yields 1qγpγγpγ 22122111 =+++ rrpqp  
   0rsγrrγpsγprγsqγspγqqγqpγ 2212211122122111 =+++=+++  
   1ssγqrγpsγprγ 22122111 =+++ . In particular not both p = 0 and r = 0. 

If t∈∆ then using 







=

00
t0

x and ( )[ ] ( ) Z∈Γ+ΓΓΓ+Γ axxaaxxa 22
3

22 .  
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Now 























+
























=+

sr
qp

γγ
γγ

00
t0

00
t0

γγ
γγ

sr
qp
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Therefore ( )[ ] ( ) ZaxΓxaΓΓaxΓxaΓ 22
3

222 ∈++ . This gives for all t∈∆, 4 times 
of ( )rtγptγ 2221 +  and ( )tsγtrγ 2211 +  are in Z. If p ≠ 0, then rtγptγ 2221 + runs 

through as t does, so every x∈∆ would satisfy ( ) Zx∈Γ 3
2x . But a non-commutative 

division Γ-ring cannot be purely inseparable over its center. This p ≠ 0 implies ∆ is 
commutative. Similarly r ≠ 0 implies ∆ is commutative. Since one of these must 
hold we get that ∆ is commutative and so M is   4-dimensional over Z. 
 Since the hypothesis of Theorem 3.14 is precisely the one lead to by the 
assumption that Theorem 3.9 (and so Theorem 3.12) was false we obtain. 
 
3.15 Theorem.  If M is a simple Γ-ring and if U is a Lie ideal of M then either U⊂Z 
or U⊃[M, M]Γ except if M is of characteristic 2 and is 4-dimensional over its center, 
 The theorem has as an immediate corollary the  
 
3.16 Corollary. If M is a simple non-commutative Γ-ring then the sub-Γ-

ring generated by [M, M]Γ is M. 
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