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ABSTRACT 

In this paper the authors have studied a lattice L whose set of finitely generated n-
ideals Fn(L) form a generalized Stone lattice. They have shown that Fn(L) is 

generalized Stone if and only if Lxx nn =><∨>< ***
, which is also equivalent 

to ( ) ***
nnnn yxyx ><∨>=<><∩><  for all Lyx ∈, . nx ><  denotes the 

principal n-ideal generated by x and 
*
nx >< is the pseudo complement of nx ><  

in the lattice of n-ideals of L. They have also shown that )(LFn  is generalized Stone 

if and only if LQP =∨  for any two minimal prime n-ideals P and Q of L. 
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1 Introduction:  
 Finitely generated n-ideals of a lattice were studied extensively in [3], [5] 
and [7]. In this paper we will study those lattices whose finitely generated n-ideals 
form a generalized Stone lattice and we will give generalizations of several results of 
generalized Stone lattices in terms of n-ideals.  
  

For a fixed element n of a lattice L, a convex sub lattice containing n is 
called an n-ideal. The idea of n-ideals is a kind of generalization of both ideals and 
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filters of a lattice. The set of all n-ideals of a lattice L is denoted by In(L), which is 

an algebraic lattice under set inclusion. Moreover, { }n  and L are respectively the 
smallest and the largest elements of In(L).  

 
        For any two n-ideals I and J of L, it is easy to check that - 

( ){ }JjIisomeforjnimxLxJIJI ∈∈=∈=∩=∧ ,,,/   
 
where  

( ) ( ) ( ) ( )xzzyyxzyxm ∧∨∧∨∧=,,  
and

{ }JjjandIiisomeforjixjiLxJI ∈∈∨≤≤∧∈=∨ 21212211 ,,/
  

The n-ideal generated by a finite number of elements is called a finitely generated n-
ideal. The set of all finitely generated n-ideals is denoted by Fn(L). n-ideal generated 

by maaa ......,,, 21  is denoted by ,........,........., 21 nmaaa ><  which is the 

interval naaanaaa mm ∨∨∨∨∧∧∧∧ ...........,........[ 2121 ].  
        Thus, the members of Fn(L) are simply the intervals [a, b] such that 

bna ≤≤ . A neat description of finitely generated n-ideals can be found in [7]. By 

[3] and [7], we know that Fn(L) is a lattice and for ],[ ba , ],[ 11 ba  ∈ Fn(L), 
],[ ba ∩ ],[ 11 ba = ],[ 11 bbaa ∧∨  and ],[],[],[ 1111 bbaababa ∨∧=∨ . 

 The n-ideal generated by a single element a is called principal n-ideal, 

denoted by na >< . Clearly, ],[ nanaa n ∨∧=>< .  
 Let L be a lattice with 0 and 1. An element La ∈*  is called a pseudo 
complement of La∈ , if 0*=∧ aa  and 0=∧ xa  implies that *ax ≤ . L is 
called pseudo complemented if its every element has a pseudo complement.  
 A lattice L with 0 is called a sectionally pseudo complemented lattice if the 
interval [0, x] is pseudo complemented for each Lx∈ .  
 A distributive lattice L with 0 and 1 is called a Stone lattice if it is pseudo 

complemented and for each =∨∈ ***, aaLa 1.  
 
2 Sectional pseudo complementation in the lattice of finitely generated n-ideals. 

For any n-ideal J of L, we 

denote { }JjallfornjnxmLxJ ∈=∈= ),,(:*
.Observe that 

*J  is an n-ideal 

and { }nJJ =∩ *
. In fact, this is the largest n-ideal which annihilates J. We call 

this as the pseudo complement of J in In(L). Moreover, for a distributive lattice L, 
In(L) is a distributive algebraic lattice and so it is pseudo complemented. Observe 
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that Fn(L) has always the smallest element viz. {n}. But it does not necessarily 

contain the largest element. So in a general distributive lattice L with ,Ln∈ we can 
not talk on pseudo complementation in the lattice Fn(L). But we can discuss on 
sectional pseudo complementation in Fn(L). Fn(L) is called sectionally pseudo 

complemented if for each )(],[ LFba n∈ , the interval { }[ ]],[, ban  in Fn(L) is pseudo 

complemented. That is, each finitely generated n-ideal contained in [ ]b,a  has a 

relative pseudo complement in { }[ ]],[, ban  which is also a member of Fn(L). 
 

We shall denote the relative pseudo complement of ],[ dc  by[ ]0, dc , while 
[ ]*, dc  denotes the pseudo complement of [ ]dc,  in In(L).  

By [7], we know that ( ] [ )nnLF d
n ×≅)(  where 

dn]( denotes the dual of the lattice 
](n . So we have the following result. 

 
Theorem 2.1: Let L be a distributive lattice and ,Ln∈  Fn(L) is sectionally pseudo 
complemented if and only if ](n is sectionally dual pseudo complemented and [n) is 
sectionally pseudo complemented. � 
 
 A distributive lattice L with 0 is called a generalized Stone lattice if for each 

LxxLx =∨∈ **](*](, . By Katrinak[2], we know that a distributive lattice L with 0 
is a generalized Stone lattice if and only if  each interval [0, x], Lx∈  is a Stone 
lattice.  
 
 The main results of this section are given in theorem 2.8 which gives several 
characterizations of those Fn(L) which are generalized Stone and this also 
generalizes some of the work of [1]. To prove this theorem we need the following 

results. Lemma 2.2 is trivial by the fact Fn(L) )[]( nn d ×≅ , while lemma 2.3 and 2.4 
are due to [5]. 
 
Lemma 2.2 : Suppose Fn(L) is a sectionally pseudo complemented distributive 
lattice. Then Fn(L) is generalized stone if and only if (n] is  generalized dual Stone 
and [n) is generalized Stone. � 
 
Lemma 2.3: Let L be a distributive lattice and Ln∈ . Then for any 

( )LFba n∈],[
 and for any n-ideal I, ],[],[],[ ** baIbabaI ∩=∩∩ .   � 
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Lemma 2.4: Suppose Fn(L) is a sectionally pseudo complemented distributive 

lattice and ],[][ badc ⊆  in ( )LFn  then  

(i) ],[],[],[ *0 badcdc ∩=  and  

(ii) ],[],[],[ **00 badcdc ∩= .   �  

     Suppose .1,0 L∈ If [ ) ]1,[nn =  is pseudo complemented, then for [ )nb∈ , 
+b  

denotes the relative pseudo complement of b in [ )n . Also if ( ] ],0[ nn =  is dual 

pseudo complemented, then for ( ] dana +∈ , denotes the dual  pseudo complement of 
a in [0, n].Following result is due to [6] 

 

Lemma 2.5:  Let nF (L) be a distributive pseudo complemented lattice (Then of 

course nF (L) has a largest element, and so 0, 1∈L). Then for [a, b] nF∈ (L), 
*],[ ba = ].,[ ++ ba d

 � 

If [a, b]∈[{n}, [c, d]]. Then {n}⊆ [a, b]⊆ [c, d]. The relative pseudo 

complement if [a, b] in above interval is denoted by
0],[ ba . Here 

dbnac ≤≤≤≤ . 
da0

 denotes the  relative dual pseudo complement of a in [c, n] 

and 
ob denotes the relative pseudo complement of b in [n, d], if [c,n] is relatively 

dual pseudo complemented and [n,d] is relatively pseudo complemented. Thus by 
the same proof of Lemma 2.5, we have the following corollary:   

Corollary 2.5.1: Let nF (L) be a sectionally pseudo complemented distributive 

lattice. Then for ],[],[],,[],[}{ 000 babadcban d=⊆⊆  .  � 

Theorem 2.6 : Suppose )(LFn  is a sectionally pseudo complemented distributive 

lattice. Let x, y L∈  with <x> ∩n <y> n ={n}. Then the following conditions are 
equivalent: 

(i) 
**
nn yx ><∨><  = L ; 

(ii) For any t ;L∈ <m(x, n, t)> ,
00 ),,( nnn ttnym >=<><∨ where <m(x, n, 

t)>
0

n  
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denotes the relative pseudo complement of < m(x, n, t)> n  in [{n}, <t> n ].   
 
Proof :(i)⇒ (ii).  Suppose (i) holds. Then for any t∈L, using Lemma 2.4 

     < m (x, n, t )>
o

nn tnym ><∨ ),,(0
 

    =(<x>
00 )() nnnn tyt ><∩><∨><∩  

      = ))(())(( **
nnnnnn ttyttx ><∩><∩><∨><∩><∩><     

      = )()(( **
nnnn tytx ><∩><∨><∩>< ) (by Lemma 2.3) 

           = nnnnn ttLtyx >=<><∩=><∩><∨>< )(( **

  
 

 ( ) ( )iii ⇒  ; Suppose (ii) holds and Lt∈ . By (ii), 
( ) ( ) .,,,, 00

nnn ttnymtnxm >=<><∨>< Then by calculation of (i) ⇒  (ii) , we have 

nnnn ttyx >=<><∩><∨>< )( **

. This implies nnn yxt ** ><∨>⊆<><  

and so 
**
nn yxt ><∨>∈< . Therefore, Lyx nn =><∨>< **

.  � 
 
Theorem 2.7: Let Fn(L) be a sectionally pseudo complemented distributive lattice. 
Then the following conditions are equivalent:  
 

(i)       Fn(L) is generalized Stone;  

(ii)       For any LyxLx nn =><∨><∈ ***, ; 

(iii) For all 
***)(,, nnnn yxyxLyx ><∨><=><∩><∈ ; 

(iv) For all }{,, nyxLyx nn =><∩><∈  implies that 
Lyx nn =><∨>< **

.  
 
Proof: (i) ⇒  (ii) . Suppose (i) holds and Lt∈ . Then for any Lx∈ , m (x, n, t ) 

nt >∈<  and so      <m (t, n, x )> { }[ ]nn tn ><∈ , . 
Since Fn(L) is generalized Stone, so <m (t, n, x )> 
( ) nnn txntm >=<><∨ 000 ,, . Then by Lemma 2.4, 
( ) ( ) nnnnn txntmtxntmt ><∩><∨><∩><=>< *** ),,(),,( = 

( ) ( )nnnnnn ttxttx ><∩><∩><∨><∩><∩>< *** )()( .  
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Thus by Lemma 2.3, ( ) ( )nnnnn txtxt ><∩><∨><∩><=>< ***
 = 

( ) nnn txx ><∩><∨><= ***
. This implies 

***
nnn xxt ><∨>⊆<><  and so 

.***
nn xxt ><∨>∈<  Therefore, Lxx nn =><∨>< ***

. 
 

(ii) ⇒  (iii). For any )()(,, **
nnnn yxyxLyx ><∨><∩><∩><∈ =       

)()( **
nnnnnn yyxxyx ><∩><∩><∨><∩><∩><  = 

{ } { } { }.nnn =∨   

Now, let { }nIyx nn =∩><∩><  for some n-ideal  I. Then 
.*

nn xIy >⊆<∩><  Meeting 
**

nx ><  with both sides, we have 
{ }.** nxIy nn =><∩∩>< Then 

*
nn xIy >⊆<∩><  

and
***

nn yxI >⊆<><∩ . 
 
 

Hence )( ***
nn xxILII ><∨><∩=∩=  = 

***** )()(( nnnn yxxIxI ><∨>⊆<><∩∨><∩ .  

Therefore, ( )***
nnnn yxyx ><∩><=><∨>< . 

 

(iii) ⇒  (iv) Let { }nyx nn =><∩><  for some x, .Ly∈  Then by (iii), 

L={ } ( ) ****
nnnn yxyxn ><∨>=<><∩><= . Thus (iv) holds.  

 
(iv) ⇒  (ii) Let .Lt∈ By Lemma 2.3 and by Lemma 2.4, for any 

( ) nnn txxLx ><∩><∨><∈ ***.,   

= ( ) ( )nnnn txtx ><∩><∨><∩>< ***
  

= ( ) ( )( )nnnnnn ttxttx ><∩><∩><∨><∩><∩>< *** ()  

= ( ) ( )nnnn txntmtxntm ><∩><∨><∩>< *** ),,(),,(  

 = 
000 ),,(),,( nn tnxmtnxm ><∨>< . Here 

0),,( ntnxm ><  is finitely 

generated n-ideal contained in nt >< as Fn(L) is sectionally pseudo complemented. 

Then by [3], 
0),,( ntnxm >< is a principal n-ideal, say nr >< . Now 
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{ }.),,( nrtnxm nn =><∩>< So by (iv) and Lemma 2.4 

nnn trtnxm >=<><∨>< 00),,( .Therefore,
( ) nnnn ttxx >=<><∩><∨>< ***

and so  
***

nn xxt ><∨>∈< . This implies .*** Lxx nn =><∨><  Thus (ii) holds. 
To complete the proof we shall show that (iv) ⇒  (i). Since Fn(L) is 

sectionally pseudo complemented, so by  Theorem 2.1, (n] is sectionally dual pseudo 
complemented and [n) is sectionally pseudo complemented. 

Suppose dbn ≤≤ . Let 
0b be the relative pseudo complement of b in [n, 

d]. Now nbb =000 ^ . Thus nn bb ><∩>< 000
= ],[ 000 bbn ∧ ={n}. Also, 

nnn dbb >⊆<><>< 000 , . Then by the equivalent condition of Theorem 2.7,  

we have ( ) nnn ddnbmdnbm >=<><∨>< 00000 ),,(,, . But 

( ) 00 ,, bdnbm =  and ( ) 0000 ,, bdnbm = as ., 000 dbbn ≤≤  But by 

corollary 2.6 nn bb >=<>< 0000
 and nnn bbb >=<>=<>< 0000000

. 

Therefore, nnnn bbbbd >∨=<><∨>=<>< 000000
 which gives 

dbb =∨ 000
. This implies [n, d] is a Stone lattice. That is [ n ) is generalized 

Stone. 
 

A dual proof of above shows that (iv) also implies that (n] is a generalized dual 
Stone lattice. There fore, by Lemma 2.2, Fn(L) is generalized Stone.     

 
3 Minimal prime n-ideals: A prime n-ideal P of a lattice L is called a minimal 

prime n-ideal if there exists no prime n-ideal Q such PQ ≠  and PQ ⊆ . The 
following characterization of minimal prime n-ideals is due to [5]. 

Theorem 3.1: Let ( )LFn  be a sectionally pseudo complemented distributive lattice 
and P be a prime n-ideal of L. Then the following conditions are equivalent. 

i) P is minimal; 

ii) Px∈  implies Px n⊆/>< *
; 

iii) Px∈  implies Px n ⊆>< **
; 

iv) ( ) φ=><∩ ntDP for all PLt −∈      
where ; 
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    ( ) { }{ }.: nxtxtD nnn =><>∈<=><     
 

For a prime ideal P of a distributive lattice L with 0, Cornish in [1] has defined 0(P) 

={ }PLysomeforyxLx −∈=∧∈ 0: . Clearly, 0(P) is an ideal and 0(P) 
P⊆ . Cornish in [1] has shown that 0(P) is the intersection of all the minimal prime 

ideals of L which are contained in P.  
 

For a prime n-ideal P of a distributive lattice L, we write n(P)= 
( ){ }.,,: PLxsomefornxnymLy −∈=∈  Clearly, ( )Pn  is an n-ideal 

and ( )Pn P⊆ .  
 

Lemma 3.1.1: Let P be a prime n-ideal in a distributive lattice L. Then each 
minimal prime n-ideal belonging to n(P) is contained in P.  
 

Proof: Let Q be a minimal prime n-ideal belonging to n(P). If PQ ⊆/ , then choose 
.PQy −∈  By [5] we know that Q is either an ideal or a filter. Without loss of 

generality suppose Q is an ideal. Now let ( ){ }.)(,,: PnsnymLsS ∈∈=  We 

shall show that QS ⊆/ . If not, let ( ) ).[yQLD ∨−=  Then ( ) .φ=∩DPn  

For otherwise, )(Pnry ∈∧  for some QLr −∈ . Then by convexity, 
( ) nryrnymry ∨∧≤≤∧ )(,,  implies ( ) ).(,, Pnrnym ∈  Hence 

Sr∈ Q⊆ , which is a contradiction. Thus, by Stone’s separation theorem for n-
ideals in [4] there exists a prime n-ideal R containing n(P) disjoint to D. Then 

QR ⊆ . Moreover, QR ≠  as ,Ry∉ this shows that Q is not a minimal prime n-

ideal belonging to n(P), which is a contradiction. Therefore, QS ⊆/ . Hence there 

exists Qz∉  such that ( ) )(,, Pnznym ∈ . Thus 
( ) .),,,,( PLxsomefornxnznymm −∈=  It is easy to see that 
( ) ( ) ).,,,,(),,,,( znznymmxnznymm =  Hence ( ) .),,,,( nznxnymm =  

Since P is prime and    y, Px∉ , so ( ) Pxnym ∉,, . Therefore, 
QPnz ⊆∈ )( , which is a contradiction. Hence PQ ⊆ .   

 
Proposition 3.1.2: If P is a prime n-ideal in a distributive lattice L, then n(P) is the 
intersection of all minimal prime n-ideals contained in P. 
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Proof: Clearly n(P) is contained in any prime n-ideal which is contained in P. 
Hence n(P) is contained in the intersection of all minimal prime n-ideals contained 
in P. Since L is distributive, so by [4], n(P) is the intersection of all minimal prime 
n-deals belonging to it. By [6] as each  prime n-ideal contains a minimal prime n-
ideal, above remarks and Lemma 2.2 establish the proposition. �  
 

Theorem 3.4 gives another characterization of those Fn (L) which are 
generalized Stone in terms of minimal prime n-ideals. To prove this we need the 
help of the following result which is due to [6].  
Theorem 3.2: Let Fn (L) be sectionally pseudo complemented distributive Lattice. 
Then the following conditions are equivalent: 

(i) For any  LxxLx nn =><∨><∈ ***, ;  

(ii) For all  { }nyxLyx nn =><∩><∈ ,,  implies that 
Lyx nn =><∨>< **

.   � 
 

Theorem 3.3: Let Fn (L) be a sectionally pseudo complemented distributive Lattice. 
Then the following conditions are equivalent. 

(i) For any  LxxLx nn =><∨><∈ ***, , equivalently, Fn (L) is 
generalized Stone; 

(ii) For any two minimal prime n-ideals P and Q,   LQP =∨ ; 
(iii) Every prime n-ideal contains a unique minimal prime n-ideal; 
(iv) For each prime n-ideal P, n(P) is a prime n-ideal.    

 

Proof: ( ) ( ).iii ⇒ Let .QPx −∈  then QPx n −⊆>< . Now, 
{ } .* Qnxx nn ⊆=><∩><  So Qx n ⊆>< *

 as Q is prime. Again Px∈  

implies Px n ⊆>< **
 by theorem 3.1. Hence by (i), PxxL nn ⊆><∨>=< ***

. 

Therefore, LQP =∨ .  
( ) ( )iiiii ⇔  is trivial. 
( ) ( )iviii ⇒  is direct consequence of Proposition 3.3 
( ) ( )iiv ⇒ . Suppose ( )iv  holds. First we shall show that for all x, Ly∈  with 

{ }nyx nn =><∩><  implies Lyx nn =><∨>< **
. If it does not hold, then there 

exists Lyx ∈,  with { }nyx nn =><∩><  such that Lyx nn ≠><∨>< **
. As L 

is distributive, so by Stone’s separation theorem, there is a prime n-ideal P such that 
Pyx nn ⊆><∨>< **

. Then Px n ⊆>< *
and Py n ⊆>< *

 imply )(Pnx∉  and 
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)(Pny∉ . But n(P) is prime and so m(x,n,y) =n )(Pn∈  is contradictory.  

Thus for all x, y L∈  with { }nyx nn =><∩><  implies that 
Lyx nn =><∨>< **

. Hence by equivalent conditions of theorem 3.4, (i) holds.    
� 

 
We conclude the paper with the following result is an immediate consequence of  

above theorem. This has also been proved separately in [6]. 
 

Theorem 3.4:  Let Fn (L) be an pseudo complemented distributive Lattice. Then the 
following conditions are equivalent: 

(i) Fn (L) is Stone; 
(ii) For any two minimal prime n-ideals P and Q, ,LQP =∨ that is, they 

are comaximal; 
(iii) Every prime n-ideal contains a unique minimal prime n-ideal; 
(iv) For each prime n-ideal P, n(P) is a prime n-ideal.   � 
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