Journal of Physical Sciences, Vol. 15, 2011, 27-32 ISSN: 0972-8791, www.vidyasagar.ac.in/journal Published on 22 December 2011

Commutativity of Two Torsion Free σ-Prime Gamma Rings with Nonzero Derivations

A.K.Halder and A.C.Paul

Department of Mathematics University of Rajshahi Rajshahi University-6205 Rajshahi,Bangladesh Acpaulru_math@yahoo.com

Received March 24, 2011; accepted August 10, 2011

ABSTRACT

Let M be a 2-torsion free σ -prime Γ -ring and d a nonzero derivation on M. Then M is commutative with the help of the condition $[d(x),x]_{\alpha} \in Z(M)$, for all $x \in M$ and $\alpha \in \Gamma$. Let I be a nonzero σ -ideal of M and d a nonzero derivation on M commuting with σ . Then M is commutative in both conditions $[d(x),d(y)]_{\alpha}=0$ and $d(x\alpha y) = d(y\alpha x)$, for all $x, y \in I$ and $\alpha \in \Gamma$.

Keywords: n-torsion free, σ -ideals, derivations, σ -prime Γ -rings.

1 Introduction

Let M and Γ be additive abelian groups. M is said to be a Γ -ring if there exists a mapping MX Γ XM \rightarrow M (sending (x, α ,y) into x α y) such that

(a) $(x + y) \alpha z = x \alpha z + y \alpha z$,

 $x(\alpha + \beta)y = x\alpha y + x\beta y,$

 $x\alpha (y + z) = x\alpha y + x\alpha z$,

(b) $(x\alpha y)\beta z = x\alpha (y\beta z)$,

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

A subset A of a Γ -ring M is a left(right) ideal of M if A is an additive subgroup of M and (M Γ A), the set of all m α a such that $m \in M, \alpha \in \Gamma, a \in A, (A\Gamma M)$ is contained in A. The centre of M is denoted by Z(M), the set of all $m \in M$ such that $a\alpha m=m\alpha a$ for all $a \in M$ and $\alpha \in \Gamma$. M is commutative if $a\alpha b=b\alpha a$, for all $a,b \in M$ and $\alpha \in \Gamma$. M is prime if $a\Gamma M\Gamma b=0$ with $a,b \in M$, then a=0 or b=0. M is σ -prime if $a\Gamma M\Gamma b=a\Gamma M\Gamma \sigma(b)=0$ with $a,b \in M$, then a=0 or b=0. An ideal I of M is σ -ideal if $\sigma(I)=I$. We denote the commutator $x\alpha y$ -y αx by $[x,y]_{\alpha}$. M is n-torsion free if nm=0 for all $m \in M$ implies m=0, where n is an integer. An additive mapping $d:M \rightarrow M$ is a derivation if $d(\alpha \alpha b)=\alpha \alpha d(b) + d(\alpha)\alpha b$, a left derivation if $d(\alpha \alpha b)=\alpha \alpha d(b) + b\alpha d(\alpha)$, a Jordan

derivation if $d(a\alpha a)=a\alpha d(a) + d(a)\alpha a$, a Jordan left derivation if $d(a\alpha a)=2a\alpha d(a)$, for all $a,b \in M$ and $\alpha \in \Gamma$.

Y.Ceven[4] concerned on Jordan left derivation on completely prime Γ -rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ -ring that makes the Γ -ring commutative with an assumption. With the same assumption, he proved that every Jordan left derivation on a completely prime Γ – ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation for Γ -rings.

Mustafa Asci and Sahin Ceran [8] worked on a nonzero left derivation d on a prime Γ -ring M for which M is commutative with the conditions $d(U) \subseteq U$ and $d^2(U) \subseteq Z$, where U is an ideal of M and Z is the centre of M. They also proved the commutativity of M by the nonzero left derivation d_1 and right derivation d_2 on M with the conditions $d_2(U) \subseteq U$ and $d_1d_2(U) \subseteq Z$.

In [11], Sapanci and Nakajima defined a derivation and a Jordan derivation on Γ -rings and investigated a Jordan derivation on a certain type of completely prime Γ -ring which is a derivation. They also gave examples of a derivation and a Jordan derivation on Γ -rings.

Bresar and Vukman [3] showed that the existence of a nonzero Jordan left derivation on R into X implies R is commutative, where R is a ring and X is 2-torsion free and 3-torsion free left R-module.

Qing Deng [5] worked on Jordan left derivations d of prime ring R of characteristic not 2 into a nonzero faithful and prime left R-module X. He proved the commutativity of R with Jordan left derivation d.

Md. Ashraf and Rehman [1] worked on Lie ideals and Jordan left derivations of prime rings. They proved that if d is an additive mapping on a 2-torsion free prime ring R satisfying $d(u^2)=2ud(u)$, for all $u \in U$, where U is a Lie ideal of R such that $u^2 \in U$, for all $u \in U$, then d(uv) = ud(v) + vd(u), for all $u \in U$.

L.Oukhtite and S.Salhi [10] studied on derivations in σ -prime rings. They showed that R is a 2-torsion free σ -prime ring and d:R \rightarrow R is a nonzero derivation with $[d(x),x] \in Z(R)$, for $x \in R$, then R is commutative. They also proved that if d commutes with σ , then R is commutative for the conditions that [d(x),d(y)] = 0 and d(xy) = d(yx), for all $x,y \in I$,where I is a σ -ideal of R.

In our paper, we follow the results of L.Oukhtite and S.Salhi [10] in gamma rings. We prove that if d is a nonzero derivation on a 2-torsion free σ -prime Γ -ring M and $[d(x),x]_{\alpha} \in Z(M)$, for all $x \in M$ and $\alpha \in \Gamma$, then M is commutative. We also investigate a nonzero derivation d which commutes with σ on M for which M is commutative in both conditions $[d(x),d(y)]_{\alpha} = 0$ and $d(x\alpha y) = d(y\alpha x)$, for all $x,y \in I$ and $\alpha \in \Gamma$, where I is a σ -ideal of M.

Throughout this paper we shall use the mark (*) for $a\alpha b\beta c=a\beta b\alpha c$, for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$.

Commutativity of Two Torsion Free σ-Prime Gamma Rings with Nonzero 29 Derivations

In order to prove our main result, we shall state and prove some lemmas as primary results .

2 Primary Results

Lemma 2.1 Let $U \not\subset Z(M)$ be a Lie ideal of a 2-torsion free σ -prime Γ -ring M. Then there exists an ideal I of M such that $[I,M]_{\alpha} \subseteq U$ but $[I,M]_{\alpha} \not\subset Z(M)$, for all $\alpha \in \Gamma$.

Proof. Since M is 2-torsion free and $U \not\subset Z(M)$, by results in [6], we can show that $[U,U]_{\alpha} \neq 0$ and $[I,M]_{\alpha} \subseteq U$, where $I = I\alpha[U,U]_{\alpha}\alpha M \neq 0$ is an ideal of M generated by $[U,U]_{\alpha}$. Now, $U \not\subset Z(M)$ implies $[I,M]_{\alpha} \not\subset Z(M)$; for if $[I,M]_{\alpha} \subseteq Z(M)$ then $[I,[I,M]_{\alpha}]_{\alpha} = 0$, which gives $I \subseteq Z(M)$ and ,since $I \neq 0$ is an ideal of M, so M = Z(M). \Box

Lemma 2.2 Let $U \not\subset Z(M)$ be a Lie ideal of a 2-torsion free σ -prime Γ -ring M and $a, b \in M$ such that $a\alpha U\beta b=a\alpha U\beta \sigma(b)$, for all $\alpha, \beta \in \Gamma$. Then a=0 or b=0.

Proof. Since M is a σ -prime Γ -ring, there exists an ideal I of M such that $[I,M]_{\alpha} \subseteq U$ but $[I,M]_{\alpha} \not\subset Z(M)$, for all $\alpha \in \Gamma$, Lemma 2.1. Now, for $u \in U, y \in I$ and $m \in M$, we have $[y\alpha a\alpha u,m]_{\alpha} \in [I,M]_{\alpha} \subseteq U$, and so

 $0=a\alpha[y\alpha a\alpha u,m]_{\beta}\beta b$

= $a\alpha[y\alpha a\alpha u,m]_{\beta}\beta\sigma(b)$

 $=a\alpha[y\alpha a,m]_{\alpha}\beta u\beta \sigma(b) + a\alpha y\beta a\alpha[u,m]_{\alpha}\beta \sigma(b),by (*)$

= $a\alpha[y\alpha a,m]_{\alpha}\beta u\beta\sigma(b)$,since $a\alpha[u,m]_{\alpha} \in a\alpha U\beta b$ = $a\alpha U\beta\sigma(b)$

=aαyαaαmβuβσ(b) - aαmαyαaβuβσ(b)

= aαyαaαmβuβσ(b) – aαmαyβaαuβσ(b),by (*)

= $a\alpha y\alpha a\alpha m\beta u\beta \sigma(b)$, by assumption.

```
Thus a\alpha I\alpha a\alpha M\beta U\beta\sigma(b) = 0.
```

If $I \neq 0$ then $U\beta\sigma(b) = 0$, by the σ -primeness of M. Now, if $u \in U$ and $m \in M$ then $(u\alpha m - m\alpha u) \in U$ and hence $(u\alpha m - m\alpha u)\beta b=0$ gives $u\alpha m\beta b=0$, that is $u\alpha M\beta b=0$. As $U\neq 0$, we have b=0. Proceeding in the same way we may reach to the decision that if $b\neq 0$ then a=0. \Box

Lemma 2.3 Let M be a σ -prime Γ -ring satisfying (*) and I a nonzero σ -ideal of M. Let d be a nonzero derivation on M commuting with σ . If $[x,M]_{\alpha}\alpha I\beta d(x) = 0$, for all $x \in I$ and $\alpha, \beta \in \Gamma$, then M is commutative.

Proof. Let $x \in I$. Since $t=x-\sigma(x) \in I$, we have $[t,m]_{\alpha}\alpha I\beta d(t) = 0$, for all $m \in M$ and $\alpha,\beta \in \Gamma$. For $t \in Sa_{\sigma}(M)$, we get $[t,m]_{\alpha}\alpha I\beta d(t) = \sigma([t,m]_{\alpha})\alpha I\beta d(t) = 0$, for all $m \in M$ and $\alpha,\beta \in \Gamma$ and by Lemma 2.2, d(t) = 0 or $[t,m]_{\alpha} = 0$, for all $m \in M$ and $\alpha \in \Gamma$.

Suppose that d(t) = 0. Then $d(x) = d(\sigma(x))$. Therefore, $[x,m]_{\alpha} \alpha I \beta d(x) = [x,m]_{\alpha} \alpha I \beta \sigma(d(x)) = 0$ and by Lemma 2.2, we have d(x) = 0 or $[x,m]_{\alpha} = 0$, for all $m \in M$ and $\alpha \in \Gamma$.i.e., either d(x) = 0 or $x \in Z(M)$. If $[t,m]_{\alpha} = 0$, for all $m \in M$ and $\alpha \in \Gamma$, then $t \in Z(M)$ and thus $[x,m]_{\alpha} = [\sigma(x),m]_{\alpha}$, for all $m \in M$ and $\alpha \in \Gamma$. Hence $[x,m]_{\alpha} \alpha I \beta d(x) = \sigma([x,m]_{\alpha}) \alpha I \beta d(x) = 0$. Again by Lemma 2.2, d(x) = 0 or $x \in Z(M)$.

Finally, for each $x \in I$ either d(x) = 0 or $x \in Z(M)$. Consider G_1 , the set of all $x \in I$ such that d(x) = 0 and G_2 , the set of all $x \in I$ such that $x \in Z(M)$. It is clear that G_1

A.K.Halder and A.C.Paul

and G_2 are additive subgroups of I and hence by Brauer's trictk, $I = G_1$ or $I = G_2$. If I = G_1 , then d(x) = 0, for all $x \in I$. For any $n \in M$, we replace x by nax in d(x) = 0 to get $x\alpha d(n) = 0$ for all $x \in I$ and $\alpha \in \Gamma$ and so that $I\alpha d(n) = 0$, for all $n \in M$ and $\alpha \in \Gamma$. In particular, using (*), we get $1\alpha I\beta d(n) = \sigma(1)\alpha I\beta d(n) = 0$, for all $n \in M$ and $\alpha, \beta \in \Gamma$. By Lemma 2.2, d = 0, a contradiction. Hence, $I = G_2$ so that $I \subseteq Z(M)$. Let $m, n \in M$ and $x \in I$. Then by (*), we have man $\beta x = \max \beta n = n \alpha m \beta x$. Now, from man $\beta x =$ $\max\beta n = n\alpha m\beta x$, we have $[m,n]_{\alpha}\alpha I = 0$ and then $[m,n]_{\alpha}\alpha I\beta 1 = [m,n]_{\alpha}\alpha I\beta\sigma(1) = 0$. This gives $[m,n]_{\alpha} = 0$, for all $m,n \in M$ and $\alpha \in \Gamma$, by Lemma 2.2 and so M is commutative. \Box

Lemma 2.4 Let M be a 2-torsion free σ -prime Γ -ring which satisfies (*) and I a nonzero σ -ideal of M. If d is a derivation on such that $d^2(I) = 0$ and commutes with σ on M, then d = 0.

Proof. First suppose that d is nonzero. Let $m_0 \in M$ such that $d(m_0) \neq 0$. For any $x \in I$, we have $d^2(x) = 0$. Replacing x by xay in $d^2(x) = 0$, we get

$$d^{2}(\mathbf{x})\alpha\mathbf{y} + 2\mathbf{d}(\mathbf{x})\alpha\mathbf{d}(\mathbf{y}) + \mathbf{x}\alpha d^{2}(\mathbf{y}), \qquad (1)$$

for all $x, y \in I$ and $\alpha \in \Gamma$.

Using the facts that $d^2(x) = 0$ and M is 2-torsion free in (1), we get $d(x)\alpha d(y) = 0$, for all $x,y \in I$ and $\alpha \in \Gamma$ so that $d(x)\alpha d(I) = 0$. In particular, $d(x)\alpha d(y\beta m_0) =$ $d(x)\alpha y\beta d(m_0) = 0$, for all $y \in I$ and $\alpha, \beta \in \Gamma$ and therefore $d(x)\alpha I\beta d(m_0) = 0$. Since d commutes with σ , the fact that I is a σ -ideal gives $\sigma(d(x))\alpha I\beta d(m_0) = 0$. Consequently $d(x)\alpha I\beta d(m_0) = \sigma(d(x))\alpha I\beta d(m_0) = 0$, for all $x \in I$ and $\alpha, \beta \in \Gamma$. By Lemma 2.2, we get (2)

d(x) = 0,

for all $x \in I$.

Replacing x by x αm_0 in (2), we get x $\alpha d(m_0)$, for all $x \in I$ and $\alpha \in \Gamma$ so that $I\alpha d(m_0) =$ 0. In particular, $1\alpha I\beta d(m_0) = \sigma(1)\alpha I\beta d(m_0) = 0$ so that $d(m_0) = 0$, a contradiction. Consequently, $d = 0. \Box$

The main results state and prove as follows.

Theorem 2.1 Let M be a 2-torsion free σ -prime Γ -ring satisfying (*) and let d: M \rightarrow M be a nonzero derivation. If $[d(x),x]_{\alpha} \in Z(M)$, for all $x \in M$ and $\alpha \in \Gamma$, then M is commutative.

Proof. Replacing x by
$$x + y$$
 in $[d(x),x]_{\alpha} \in Z(M)$, we get
 $[d(x),y]_{\alpha} + [d(y),x]_{\alpha} \in Z(M)$, (3)

Replacing y by x α x in (3) and using the fact that M is 2-torsion free, we have $x\alpha[d(x),x]_{\alpha} \in Z(M)$. Hence $[m,x]_{\alpha}\alpha[d(x),x]_{\alpha} = 0$, for all $x \in M$ and $\alpha \in \Gamma$. Replacing m by d(x) in $[m,x]_{\alpha}\alpha[d(x),x]_{\alpha} = 0$, we get $[d(x),x]_{\alpha}\alpha[d(x),x]_{\alpha} = 0$. Now, for $[d(x),x]_{\alpha} \in Z(M)$, we get $[d(x),x]_{\alpha} \alpha M\beta[d(x),x]_{\alpha} \alpha \sigma([d(x),x]_{\alpha}) = 0$, for all $x \in M$ and $\alpha,\beta\in\Gamma$. Since $[d(x),x]_{\alpha}\alpha\sigma([d(x),x]_{\alpha})\in Sa_{\sigma}(M)$ and M is σ -prime, then $[d(x),x]_{\alpha}=0$ or $[d(x),x]_{\alpha} \alpha \sigma([d(x),x]_{\alpha}) = 0$. Suppose that $[d(x),x]_{\alpha} \alpha \sigma([d(x),x]_{\alpha}) = 0$. Then by Commutativity of Two Torsion Free σ -Prime Gamma Rings with Nonzero 31 Derivations

 $[d(x),x]_{\alpha} \in Z(M)$, we have $[d(x),x]_{\alpha} \alpha M\beta[d(x),x]_{\alpha} = [d(x),x]_{\alpha} \alpha M\beta\sigma([d(x),x]\alpha) = 0$ and by the semiprimeness of M, we get (4)

 $[\mathbf{d}(\mathbf{x}),\mathbf{x}]_{\alpha} = \mathbf{0},$

for all $x \in M$ and $\alpha \in \Gamma$ and so

 $[d(x),y]_{\alpha} + [d(y),x]_{\alpha} = 0,$ (5)

for all $x, y \in M$ and $\alpha \in \Gamma$.

Replacing v by x α v in (5), we have

$$[d(x), x\alpha y]_{\alpha} + [d(x\alpha y), x]_{\alpha} = d(x)\alpha[x, y]_{\alpha} = 0,$$
 (6)
for all $x, y \in M$ and $\alpha \in \Gamma$.

Replacing y by y βz in (6) and using (*), we have $d(x)\alpha y\beta[x,z]_{\alpha} = 0$, for all $x,y,z \in M$ and $\alpha, \beta \in \Gamma$ and hence $d(x)\alpha M\beta[x,z]_{\alpha} = 0$, for all $x, z \in M$ and $\alpha, \beta \in \Gamma$. In particular,

$$d(\sigma(x))\alpha M\beta[\sigma(x),\sigma(z)]_{\alpha} = \sigma(d(x))\alpha M\beta\sigma([x,z]_{\alpha}) = 0,$$
(7)
since d commutes with σ .

Applying σ in (7) and (*), we obtain $[x,z]_{\alpha}\alpha M\beta d(x) = 0$, for all $x,z \in M$ and $\alpha, \beta \in \Gamma$. Hence by Lemma 2.3, we can conclude that M is commutative. \Box

Theorem 2.2 Let M be a 2-torsion free σ -prime Γ -ring which satisfies (*) and I a nonzero σ -ideal of M. If d: M \rightarrow M is a nonzero derivation such that $[d(x),d(y)]_{\alpha} =$ 0, for all $x, y \in I$ and $\alpha \in \Gamma$ and commutes with σ , then M is commutative.

Proof. We have $[d(x), d(y)]_{\alpha} = 0,$ (8)for all $x, y \in I$ and $\alpha \in \Gamma$. Replacing y by $x\alpha y$ in (8), we get $d(x)\alpha[d(x),y]_{\alpha} + [d(x),x]_{\alpha}\alpha d(y) = 0,$ (9) for all $x, y \in I$ and $\alpha \in \Gamma$. Now, for $m \in M$, we replace y by y βm in (9) and use (*) to get $d(x)\alpha y\beta[d(x),m]_{\alpha} + [d(x),x]_{\alpha} = 0,$ (10)for all $x, y \in I$ and $\alpha, \beta \in \Gamma$. Replacing m by d(z) in (10) and by (*), we have $[d(\mathbf{x}),\mathbf{x}]_{\alpha} \alpha \mathbf{y} \beta d^{2} (\mathbf{z}) = 0,$ (11)for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Since d commutes with σ and I is a σ -ideal, (11) becomes $[d(x),x]_{\alpha} \alpha I\beta d^{2}(z) = \sigma(z)$ $[d(x),x]_{\alpha}$) $\alpha I\beta d^2(z) = 0$ and so by Lemma 2.2, we have either $d^2(z) = 0$, for all $z \in I$

or $[d(x),x]_{\alpha} = 0$, for all $x \in I$ and $\alpha \in \Gamma$. If $d^2(z) = 0$, for all $z \in I$, then by Lemma 2.4, we have d = 0, which is a contradiction. So suppose that

$$[\mathbf{d}(\mathbf{x}),\mathbf{x}]_{\alpha} = 0, \tag{12}$$

for all $\mathbf{x} \in \mathbf{I}$ and $\alpha \in \Gamma$.

Replacing x by x + y in (12), we obtain

 $[d(x),y]_{\alpha} + [d(y),x]_{\alpha} = 0,$ (13)for all $x y \in I$ and $\alpha \in \Gamma$

Replacing y by yax in (13), we have
$$[y,x]_{\alpha}ad(x) = 0$$
 and so
 $[x,y]_{\alpha}ad(x) = 0$, (14)
for all $x \in I$ and $\alpha \in \Gamma$.

For any $m \in M$, we replace y by m β y and use (*), we obtain $[x,m]_{\alpha}\alpha y\beta d(x) = 0$, for all $x, y \in I$ and $\alpha, \beta \in \Gamma$ and so $[x,m]_{\alpha}\alpha I\beta d(x) = 0$, for all $x \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Hence by Lemma 2.3, M is commutative. \Box

Theorem 2.3 Let M be a 2-torsion free σ -prime Γ -ring which satisfies (*) and I be a nonzero σ -ideal of M. Suppose that d: M \rightarrow M is a nonzero derivation such that $d(x\alpha y) = d(y\alpha x)$, for all $x, y \in I$ and $\alpha \in \Gamma$ and d commutes with σ . Then M is commutative.

Proof. Let $x,y,z \in I$. Since $d[x,y]_{\alpha} = 0$, for all $x \in I$ and $\alpha \in \Gamma$, the condition $d([x,y]_{\alpha}\alpha z) = d(z\alpha[x,y]_{\alpha})$ gives

$$[x,y]_{\alpha}\alpha d(z) = d(z)\alpha[x,y]_{\alpha}, \qquad (15)$$

for all $x, y, z \in I$ and $\alpha \in \Gamma$.

By condition $d(x\alpha y) = d(y\alpha x)$, for all $x, y \in I$ and $\alpha \in \Gamma$, we have $[d(x), y]_{\alpha} = [d(y), x]_{\alpha}$, for all $x, y \in I$ and $\alpha \in \Gamma$. In particular, $[d(x\alpha x), y]_{\alpha} = [d(y), x\alpha x]_{\alpha}$ and so

$$d(\mathbf{x})\alpha[\mathbf{x},\mathbf{y}]_{\alpha} + [\mathbf{x},\mathbf{y}]_{\alpha}\alpha d(\mathbf{x}) = 0,$$
(16)

(17)

for all $x, y \in I$ and $\alpha \in \Gamma$.

Since M is 2-torsion free, by (15) and (16), we have

 $[\mathbf{x},\mathbf{y}]_{\alpha}\alpha\mathbf{d}(\mathbf{x})=0,$

for all $x, y \in I$ and $\alpha \in \Gamma$.

For any $m \in M$, we replace y by m β y in (17) and use (*) to get $[x,m]_{\alpha}\alpha y\beta d(x) = 0$, for all $x,y \in I$ and $\alpha,\beta \in \Gamma$. Hence $[x,M]_{\alpha}\alpha I\beta d(x) = 0$, for all $x \in I$ and $\alpha,\beta \in \Gamma$ and by Lemma 2.3, we can arrive at the decision that M is commutative. \Box

REFERENCES

- 1. Ashraf and Rehman,2000, 'On Lie ideals and Jordan left derivations of prime rings,' *Arch.Math.(Brno)*,36,201-206.
- 2. W.E.Barnes, 1966, 'On the Γ-rings of Nobusawa,' *Pacific J.Math.*, 18, 411-422.
- 3. M.Bresar and J.Vukman, 1988 'Jordan derivations on prime rings, 'Bull. *Austral. Math. Soc.*, 37, 321-322.
- 4. Y.Ceven, 2002, 'Jordan left derivations on completely prime gamma rings,' *C.U.Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi*, Cilt 23 Sayi2.
- 5. Q.Deng, 1992, 'On Jordan left derivations, 'Math.J.OkayamaUniv., 34, 145-147.
- 6. I.N.Herstein, 1969, 'Topics in Ring Theory,' Univ. of Chicago Press, Chicago,.
- 7. I.N.Herstein,1969,'Lie Ideals and Derivations of Prime Rings,'*Journal of Algebra*,71,259-267.
- 8. Mustafa Asci and Sahin Ceran,2007, 'The commutativity in prime gamma rings with left derivation,' *International Mathematical Forum*,2(3),103-108.
- 9. N.Nobusawa, 1964, 'On a generalization of the ring theory,' Oska J.Math., 1.
- 10. L.Oukhtite and S.Salhi,2007, 'On Derivations in σ-prime Rings, 'International Journal of Algebra,1(5),241-246.
- 11. M.Sapanci and A.Nakajima,1997,'Jordan derivations on completely prime gamma rings,'*Math.Japonica*,46(1),47-51.