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ABSTRACT 
A simple wet chemical method has been successfully used to fabricate Spherical zinc 
oxide nanoparticles. The structural characteristics were investigated through X-ray 
diffraction. The crystal unit cell of the nanoparticles was found to be hexagonal. The 
morphology of the nanostructures was studied using transmission electron microscopy 
(TEM) and field emission scanning electron microscopy (FESEM). SAED pattern of the 
sample confirms the uniform distribution of nanoparticles. UV-visible spectrum was used 
to calculate the band gap of the nanoparticles. The value of the band gap also suggests the 
quantum confinement effect. The photoluminescence spectrum shows shallow deep level 
visible emission due to various defect states. Thus, our investigation will be very helpful 
in the development of ZnO based optoelectronic device applications. 
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1. Introduction 
ZnO is very well known multifunctional wide and direct band gap semiconductor having 
excellent size dependent tunable optical property which is of great interest in the NPs 
based drug delivery, bio-imaging, and biomedical research [1,2,3]. Due to  large direct 
band gap ZnO being used in many optoelectronic devices [4,5,25] like short wavelength 
light-emitting[6], UV lasing[7], and It also exhibits other interesting properties, like 
magnetic properties [28], piezoelectricity [8], photovoltaic devices and optical solar cells 
[9], gas sensing[10], These properties depend on the morphology of the nanostructures. 
Various methods, such as physical and chemical-vapor deposition [11], hydrothermal 
growth [12, 13], pulsed-laser deposition [14] have already appeared in the literature to 
fabricate various types of ZnO nanostructures. Some of the above-mentioned methods 
have some drawbacks. Used precursors are unstable causing environmental hazards and 
require very high temperature, low pressure, control rate of carrier flow and many more. 
These methods are not cost effective also. Here, we report the fabrication of ZnO 
nanoparticles by a simple and cost-effective wet-chemical method.  We next investigated 
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the structural and morphological behavior of such ZnO nanoparticles .The optical 
absorption and emission property of the ZnO nanoparticles was also investigated. 
 
2. Experimental 
In the synthesis of zinc oxide nanoparticles (NPs) at room temperature, we followed the 
conventional wet chemical method for synthesis of ZnO nanostructures as reported in 
[15]. All the chemicals of the synthesis of ZnO NPs were used as supplied (Merck- 99.99 
% pure). In a typical synthesis process, 0.25 M of zinc acetate di-hydrate (Zn(CH3COO)2. 
2H2O) was dissolved in methanol to prepare 100 ml solution. NaOH solution was 
prepared by dissolving predetermined amount of NaOH in methanol to prepare 0.25 M 
NaOH solution. Then under constant stirring, the zinc acetate solution was added drop-
wise to the NaOH solution and the stirring was continued further for 4 hour. At the end of 
the reaction, a white colloidal solution was obtained. The solution was then filtered and 
the precipitate was dried at 1000c through 2 hour in an ordinary furnace for further 
structural and optical characterization. X-Ray diffraction (XRD) data were collected in a 
Rigaku X-ray diffractometer using Cu-Kα radiation of wavelength 1.54 Å over the 
angular range 20°<2θ<80°. Scanning electron microscope (SEM) images were recorded 
in a Zeiss SEM operating at 5 kV. For TEM study a very small amount of the powder 
sample was first dispersed in alcohol by ultra-sonication. A drop of that solution was 
taken on a carbon coated grid for TEM imaging. Optical absorption measurements were 
carried out by using Shimadzu-Pharmaspec-1700 UV-VIS in the range 200–800 nm. 
Room temperature photoluminescence (PL) data were recorded in a PERKIN ELMER 
LS-55 spectrometer using Xenon lamp as a source of excitation at 330 nm. 
 
3. Results and discussions 
3.1. UV-visible spectroscopy 
UV-visible spectroscopy was carried out to study further the optical property of the 
nanoparticles. The room temperature UV-absorption spectra of the ZnO nanoparticles 
dispersed in water is shown in figure 1(A). ZnO NPs shows a prominent exciton band at 
366 nm due to excitonic transition at room temperature [20, 30]. This absorption in the 
visible range of wavelength implies that there exist more defect energy levels in the 
synthesized ZnO nanostructures that are due to the specific experimental synthesis 
conditions. Optical absorption coefficient has been calculated in the Wavelength region 
200–900 nm. The bandgap of the as-prepared nanoparticles are are determined from the 
relation [21] 

(�ℎ�)� = �(ℎ� − 
�) 
where C is a constant. Eg is the band gap of the material and α is the absorption 
coefficient. Figure 1(B) shows the plot of (αhν)2 vs. energy (hν) and it is used to 
determine band gap. The band gap of the sample is found to be 3.78 eV (figure 1(B)), 
which is greater than the bulk ZnO (3.37 eV) [22-23].  
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Figure 1: (A) UV-VIS absorption spectra of the ZnO nanoparticles, 
the determination of the band gap of the ZnO nanoparticles.

 
3.2. Photoluminescence 
The PL emission spectra of the ZnO nanoparticles shown in figure 
emission peaks, these are a strong blue emission at ~395 nm, a blue
~485 nm, and a weak green emission at 53
interstitial zinc or oxygen [16]. The green emission of the ZnO prepared corresponds to 
the singly ionized oxygen vacancy in ZnO, and this emission is a result of capturing of a 
photo-generated hole by the oxyg
corresponding to the surface states [18]. The
due to surface defects in the ZnO powder [19].
 
3.3. X-ray diffraction (XRD)
From XRD pattern (figure 
the presence of the peaks (100), (002), (101), (102), (110), (103),
(201).The diffraction pattern indicates that the planes a
We have also calculated the crystallite size (here we mean by crystallite size as the 
dimension of the coherent diffracting domains) using Scherrer formula [
by 
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VIS absorption spectra of the ZnO nanoparticles, (B)
determination of the band gap of the ZnO nanoparticles.

Photoluminescence spectroscopy 
The PL emission spectra of the ZnO nanoparticles shown in figure 2
emission peaks, these are a strong blue emission at ~395 nm, a blue-green emission at 

nm, and a weak green emission at 530 nm. The 395 nm peak can be attributed to the 
interstitial zinc or oxygen [16]. The green emission of the ZnO prepared corresponds to 
the singly ionized oxygen vacancy in ZnO, and this emission is a result of capturing of a 

generated hole by the oxygen vacancy [17]. The 451nm, 530 nm and 5
to the surface states [18]. The blue-green emissions at 48

due to surface defects in the ZnO powder [19]. 

ray diffraction (XRD) 
From XRD pattern (figure 3), the unit cell of the crystal was found to be hexagonal with 
the presence of the peaks (100), (002), (101), (102), (110), (103), (200),
(201).The diffraction pattern indicates that the planes are randomly oriented
We have also calculated the crystallite size (here we mean by crystallite size as the 
dimension of the coherent diffracting domains) using Scherrer formula [27

                                             Crystalline size:  �
�� =
�.��⋋

β ���θ
 

In this calculation, the highest intensity (101) peak was analyzed and considered it to be 
Gaussian. The crystallite size was found to be ~18 nm. Besides, no impurity peaks were 
detected which indicates that the fabricated ZnO nanomaterials are highly pure.
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Figure 2:  Room-temperature photoluminescence spectrum of the ZnO nanoparticles.

Figure 3:  XRD pattern of the ZnO nanoparticles ; inset shows the Gaussian fitting of the 
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temperature photoluminescence spectrum of the ZnO nanoparticles.

 

XRD pattern of the ZnO nanoparticles ; inset shows the Gaussian fitting of the 
(101) peak of ZnO nanoparticles 

 

temperature photoluminescence spectrum of the ZnO nanoparticles. 

 

XRD pattern of the ZnO nanoparticles ; inset shows the Gaussian fitting of the 
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3.4. Transmission electron microscopy study 
Further studies on the structure of the ZnO nanoparticles were done using transmission 
electron microscopy. Figure 4 (A) shows the TEM image of the synthesis nanoparticles. 
The average diameter of a nanoparticle is ~20 nm. The corresponding selected area 
electron diffraction (SAED) pattern is also shown in figure 4(B), which reveals the 
crystalline nature of the nanoparticle (24-25, 29). 
 

 

Figure 4: (A) TEM of ZnO nanoparticles, (B) SAED pattern of the ZnO nanoparticles 

4. Field emission scanning electron microscope (FESEM) study  
The morphology of the fabricated ZnO nanoparticles was observed in a ZEISS Field 
emission scanning electron microscope (FESEM) operated at 5 kV. Typical FESEM 
images (scale 200 nm) of the deposited material are shown in Fig. 5. Spherical ZnO 
nanoparticles were observed to form by the wet-chemical method. The EDX analysis 
revealed that the ZnO nanoparticles are composed of 88.25% of Zn and 11.751% 
Oxygen. Thus there is possibility of formation of interstitial zinc sites in the pyramidal 
ZnO nanocrystals. 
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