
Journal of Physical Sciences, Vol. 20, 2015, 19-34
ISSN: 2350-0352 (print), www.vidyasagar.ac.in/journal
Published on 24 December 2015

19

Ranking and Unranking Algorithm for Neuronal
Trees in B-order

Mahdi Amani 1,2 and Abbas Nowzari-Dalini 1

1 Department of Computer Science, School of Mathematics, Statistics, and Computer
Science, Colleague of Science, University of Tehran, Tehran, Iran

2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
E-mail: m_amani@di.unipi.it, nowzari@ut.ac.ir

Received 7 September 2015; accepted 11 November 2015

ABSTRACT
In this paper, we present two new ranking and unranking algorithms for neuronal trees in
B-order. These algorithms are based on a generation algorithm which is given for integer
sequences corresponding to neuronal trees by Pallo. A neuronal tree is a rooted tree with
n external nodes (leaves) whose internal nodes have at least two children. These trees are
used in computational neuroscience for modeling the connections between neurons in
brain, and are also called neuronal dendritic trees. Up to our knowledge no other ranking
and unranking algorithms are given for integer sequences corresponding to neuronal trees
in B-order. The time complexity of the presented ranking and unranking algorithms for
neuronal trees with n leaves are O(n) and O(n log n), respectively.

Keywords: Tree Generation, Ranking, Unranking, B-order, neuronal tree, dendritic tree.

1. Introduction
Trees are one of the most important basic and simple data structures for organizing
information in computer science. Trees have many applications including database
generation, decision table programming, analysis of algorithms, string matching [15],
switching theory, theoretical VLSI circuit design [29], image processing [25, 28],
maintaining data [19], and as auxiliary structures for compressing data [13]. Trees are
also widely used for showing the organization of real world data such family/geneaology
trees [23], taxonomies, and modeling of the connections between neurons of the brain in
computational neuroscience [6, 7, 18]. In addition, the exhaustive generation of all trees
of a certain type is often useful; for example, a list of all trees with a given number of
nodes n, may be used to test and analyze algorithm complexity, and prove the correctness
of an algorithm [15]. Therefore, the problem of generating trees has been thoroughly
investigated in the literature and many papers have been published which deal with the
generation of all trees. For example, we can mention the generation of binary trees in [2,
11, 30, 32], k-ary trees in [3, 10, 12, 14, 24, 34, 35], trees with n nodes and m leaves in
[21, 27], neuronal trees in [4, 22, 30], non-regular trees in [33], AVL trees in [16], and
spanning trees in [8, 20].

In most of these algorithms, trees are encoded as integer sequences and then these
sequences are generated with a certain order, and consequently their corresponding trees
are also generated in a specific order. The most well-known orderings on trees are

Mahdi Amani and Abbas Nowzari-Dalini

20

A-order and B-order [35], and the orderings on the sequences are lexicographical [35],
cool-lex [9], and Gray code [14, 17].

Beside the generation algorithm for trees, ranking and unranking algorithms are also
important in the concept of tree generation [1, 24, 33, 35]. Given a specific order on the
set of trees, the rank of a tree (or corresponding sequence) is its position in the exhaustive
generated list, and the ranking algorithm computes the rank of a given tree (or sequence)
in this order. The reverse operation of ranking is called unranking; it generates the tree (or
sequence) corresponding to a given rank. Usually tree generation papers present ranking
and unranking algorithms for tree generation algorithm. Ranking and unranking
algorithms also have many applications. For example, in traditional tree compression
algorithm, for encoding the tree to code sequence and decoding the code sequence back
to a tree, the ranking and unranking algorithms can be used.

In this paper, we consider neuronal (dendritic) trees. Neuronal trees of size n are
rooted trees with n external nodes (leaves) which internal nodes have at least two children.
These trees are known with regard to their number of leaves [22]. Neuronal trees are used
for modeling the ‘dendrites of a nerve cell’ in the brain [5, 22].

Generation of neuronal trees is first studied by Pallo [22]. He introduced an integer
sequence codeword for encoding these trees and presented an efficient algorithm for
generating the integer codewords of all neuronal trees with n external nodes. The
corresponding trees are generated in B-order and the generation algorithm has O(n) worst
case time complexity. He presented a generation algorithm, but no ranking and unranking
algorithms were presented.

An encoding of length n over six letters for a neuronal tree with n leaves and a
generation algorithm on this encoding in A-order are given by Vajnovszki [30]. The
presented generation algorithm has O(n) time complexity in the worst case and O(log n)
average time complexity. He also presented an unranking algorithm with the time
complexity of O(n2) but no ranking algorithm was presented. After that, a new encoding
on three letters for neuronal trees with n leaves is presented by Amani et al. [4]. The size
of encoding is equal to the number of nodes of the tree (less than 2n and greater than
n+1). They also presented a generation algorithm on this encoding with constant average
time and O(n) time complexity in the worst case. In this algorithm, the trees were
generated in A-order. Due to the given encoding, both ranking and unranking algorithms
were also presented with O(n) and O(n log n) time complexity, respectively.

To our best knowledge, no ranking and unranking algorithms are designed for
neuronal tree in B-order. In this paper, we present two new ranking and unranking
algorithms for codewords corresponding to neuronal tree with n external nodes generated
in B-order based on the Pallo [22] generation algorithm. The time complexity of the
ranking algorithm is O(n) and it is O(n log n) for the unranking algorithm.

The remaining of the paper is organized as follows. Section 2 introduces the
definitions and notions that are used further. The Pallo [22] encoding and generation
algorithm for neuronal trees in B-order are presented in Section 3. Based on Pallo
generation algorithm, the ranking and unranking algorithms are given in Section 4.
Finally, some concluding remarks are offered in Section 5.

2. Definitions
Formally, a rooted tree is a connected and undirected graph without any cycle with a

Ranking and Unranking Algorithm for Neuronal Trees in B-order

21

special node called the root. In a rooted tree, every node is connected to the root by
exactly one path. For two connected nodes, the node nearest the root is called the parent
and the other node called its child. Each child of a node is the root of a tree called subtree
of this node. A rooted tree where the children of each node have a designated order is
called ordered tree. The children of the same parent are known as siblings, and the degree
of a node is defined as the number of its children. An external node (or leaf) is a node that
has no children, and the other nodes (that do have children) are known as internal nodes.

According to the structure of neurons, dendrites of neurons have splits such that each
branch in the splits is connected to at least two other branches except the terminal ones.
Therefore, the term neuronal tree is used to refer to a tree in which each internal node has
at least two children; in other words a neuronal tree is a tree whose nodes are either
leaves or have at least 2 children [22, 30]. These trees are known with regard to their
number of leaves. For example the tree given in Fig. 1 can be regarded as a neuronal tree
with n = 13 leaves. Recall from [22], that in dendritic terminology, the root of a neuronal
tree is taken to be the axon hillock and the external nodes are the tips of the terminal
segments. The order of magnitude of branching at a node may be described as
dichotomous if the degree of that node is 2, trichotomous if the degree is 3, and so on [7].
Formally, a neuronal tree can be defined as follows.

Definition 1. A neuronal tree T is defined as a finite set of one or more nodes such that:

1. T has a distinguished node r, called root of this tree, and if T has more than
one node, then r is connected to j ≥ 2 neuronal trees T1, T2, . . . , Tj and each
tree Ti (1 ≤ i ≤ j), is called the subtree of T.

2. The root of Ti (1 ≤ i ≤ j) is considered as a child of r.
3. T1 is the leftmost subtree, and its root is the leftmost child of r.
4. Tj is the rightmost subtree and its root is the rightmost child of r.

Figure 1: A sample neuronal tree with 5 internal nodes and 13 external nodes.

Let nS denotes the set of neuronal trees with n external nodes. The number of trees

in nS is denoted by Sn (i.e., | |n nS = S); it corresponds to the well-known nth Schröder

number [26] and can be computed by a linear recurrence formula.

Theorem 1. [26] The Schröder number counts the trees of the set nS as follows.

Mahdi Amani and Abbas Nowzari-Dalini

22

-1 -2

1 2

3(2 3) (3)
= , (for 2),

1.

n n
n

n S n S
S n

n
S S

− − − >

 = =

It is also proved in [30] that 5n
nS > for 57n > and 6n

nS < for 1n > .

As mentioned, any generation algorithm imposes an ordering on the set of trees. In
these algorithms trees are encoded as integer sequences and then these sequences are
generated with a certain order and consequently their corresponding trees are generated in
a specific order. Two such natural orderings are A-order and B-order [30, 31, 35] which
are defined for neuronal trees as follows.

Definition 2. Let T and 'T be two neuronal trees and () max deg , d{)}eg '(k T T= ,

we say that T is less than 'T in B-order ('BT Tp), iff

• ()deg de)g '(T T< or

• ()
1 {1,2,...,(1)}

(), ' , deg deg ' and : : and ' ,
i k j i

j B j i B iT T T T T T
≤ ≤ ∈ −

= =∃ ∀ p

where deg(T) is defined as the degree of root of the tree T.

Definition 3. Let T and 'T be two neuronal trees and () max deg , d{)}eg '(k T T= ,

we say that T is less than 'T in A-order ('AT Tp), iff

• | | | ' |T T< , or

• ()
1 {1,2,...,(1)}

(), ' , deg deg ' and : : and ' ,
i k j i

j A j i A iT T T T T T
≤ ≤ ∈ −

= =∃ ∀ p

where |T| (size of T) is defined as the number of leaves in the tree T.

The most well-known ordering for integer sequences is the lexicographic ordering

that is defined as follows.

Definition 4. Two integer sequences 1 2, ,···,()nv v v v= and 1 2' ' , ' ,···, '()mv v v v= are

in lexicographic order (denoted by 'v v<), if there exists min(,)1 i n m≤ ≤ , such that

1. ' for all 1j jv v j i= ≤ < ,

2. 'i iv v< .

The Pallo’s generation algorithm [22], generates the integer sequences corresponding

to neuronal trees in lexicographical ordering, and their corresponding trees are generated
in B-order.

As mentioned before, besides the generation algorithm for trees, ranking and
unranking algorithms are also important in the concept of tree generation [10, 24, 35]. Let
us consider an arbitrary class of trees of size n, the elements of this set can be listed based
on any defined ordering such as A-order or B-order. With respect to the ordering (e.g.

Ranking and Unranking Algorithm for Neuronal Trees in B-order

23

A-order or B-order), the ‘position’ of tree T in that class is called rank of T, the rank
function determines the rank of T; the inverse operation of ranking is unranking, for a
position r, the unrank function gives the tree T corresponding to this position.

3. Encoding and generation algorithm
In this section, we review the neuronal trees encoding and generation algorithm for these
trees presented by Pallo in [22]. As mentioned, the main point in generating trees is to
choose a suitable encoding to represent them, and instead of generating trees, their
corresponding codewords are generated. Pallo encoded each neuronal tree in the set nS

by an integer sequence as follows [22].

Definition 5. Given a neuronal tree T with n external nodes, the S-sequences

{ }1 2, ,···,s s s s= l corresponding to T is obtained as follows. Each internal node of

tree T is labeled with its degree minus one and each external node with zero, then the
labels are listed in pre-order traversal of T as sequence s.

For example, the S-sequence corresponding to the neuronal tree T shown in Fig. 1 is
the sequence s = {2, 2, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0}. An S-sequence s is called
feasible if there is a tree nT ∈S such that s is the S-sequences corresponding to T. We

also denote the S-sequence corresponding to T by ()s T . The feasibility of an S-sequence
corresponding to a neuronal tree is studied in the following theorem [22].

Theorem 2. An integer sequence { }1 2, ,···,s s s s= l is a feasible codeword of a

neuronal tree iff 0s =l , and [1, 1] :k∀ ∈ −l

1

|{ [1,] : 0}| .
k

i j
i

s j k s
=

> ∈ =∑

Clearly, there is a one to one correspondence between a neuronal tree and a feasible
codeword. With respect to the above theorem, the length of the feasible sequences alters
between 1 to 2 1n n+ − . In the corresponding lexicographic ordering of the S-sequences,
the first S-sequence is

2 2

1,0,1,0,...,1,0{ ,0}
n−

1442443

with length 2 1n− , and the last is
0,0,0,...,0{ 1, }

n

n−
14243

with length 1n+ . Actually, the first sequence corresponds to a right-chain binary tree
with 1n− internal nodes and n external nodes, and the last sequence corresponds to a
n-ary tree with one internal node and n external nodes. Therefore, we can present the
following theorem [22].

Theorem 3. Given two neuronal trees T and 'T in nS , T is less than 'T in B-order

Mahdi Amani and Abbas Nowzari-Dalini

24

('BT Tp), iff ()s T is lexicographically less than (')s T (i.e., () (')s T s T<).

Based on the above theorem, the generation of S-sequences in lexicographical

ordering corresponds to the generation of neuronal trees in B-order. As an example, a list
of 11 neuronal trees with 4n = external nodes in B-order, and their corresponding
S-sequences in lexicographical order are illustrated in Fig. 2.

The Pallo’s generation algorithm [22] returns the successor of a given sequence

{ }1 2, ,···,s s s s= l with length ()O n=l . In this algorithm, the sequence s is scanned from

right to left, the first non-zero element is obtained, and its position is assigned to k. If
1k = , then this sequence corresponds to the last sequence and there is no successor.

Otherwise, the successor is computed as follows. First, the length of the new sequence is
evaluated and this length is kept in l . Later, the (1)k − th element is incremented and a

subsequence corresponding to a right-chain subtree with size (1)ks − is replaced by the

last (1)ks − elements in the sequence and the elements from k to 2 1ks− +l are set to

zero. In fact, this process is similar to the replacement of the right-most child of the node
k by a right-chain binary subtree, and the appropriate number of external nodes is added
as the first children of the kth node.

The pseudocode for Pallo’s algorithm [22] is presented in Fig. 3. The algorithm
generates each sequence in constant average time. The time complexity of this algorithm
in the worst case is O(n).

4. Ranking and unranking algorithms
By having a generation algorithm in a specific order, the ranking of algorithm is desired.
To represent a neuronal tree as an integer, we need to know its index in the exhaustive
generated list by the generation algorithm. This index is called the rank of the neuronal
tree (or corresponding S-sequence); i.e., the rank of an S-sequence corresponding to a
neuronal tree with respect to some ordering is the number of previously generated
codewords in that ordering. This is achieved by ranking algorithm: The ranking algorithm
receives an S-sequence as the input and returns the index of the S-sequence. The reverse
operation of the ranking is called unranking. An unranking algorithm determines the
S-sequence corresponding to a neuronal tree having a particular rank. As mentioned, for
neuronal trees in B-order, no ranking and unranking algorithms are presented in the
literature. In this section, ranking and unranking algorithms for neuronal trees in B-order
based on S-sequences are given.

Ranking and Unranking Algorithm for Neuronal Trees in B-order

25

Figure 2: List of the trees in 4S in B-order and their corresponding S-sequences.

Mahdi Amani and Abbas Nowzari-Dalini

26

Figure 3: Pallo S-sequences generation algorithm.

Ranking and unranking algorithms usually use a precomputed table of the number of

a subclass of given trees with some specified properties to achieve efficient time
complexities; these precomputations will be done only once and stored in a table for
further use [4, 16, 27, 33]. For designing the ranking and unranking algorithms of
neuronal trees, we need some theorems and definitions. The following theorem presents
another way for calculating the cardinality of nS .

Theorem 4. For the cardinality of the set of neuronal trees with n leaves nS , we have:

2

1 1 1 2
1

2 , 1.
n

n i n i n
i

S S S S S S S
−

− −
=

= + = =∑

Proof. See [4].

Theorem 5. Let ,n mS be the number of neuronal trees with n leaves whose the root has

degree equal to m (2 m n≤ ≤). Then we have:

1.
1

, ,2
1

if 2, then .
n

n m n i n i
i

m S S S S
−

−
=

= = =∑

2.
1

, , 1
1

if 2, then .
n m

n m i n i m
i

m S S S
− +

− −
=

> = ∑

Proof. Let T be a neuronal tree with n leaves and the root of degree m, then we have two
cases.

1. If m = 2, then T has two children 1T and 2T , if 1| |T i= then the number of

such trees is equal to i n iS S− . Since i can change from 1 to n − 1, we have:

Ranking and Unranking Algorithm for Neuronal Trees in B-order

27

1

,2
1

.
n

n i n i
i

S S S
−

−
=

=∑

2. If m > 2, then T has m subtrees 1 2, ,..., mT T T . If 1| |T i= , then the number of

possible cases for T1 is equal to iS , and the number of cases for the other

subtrees (2,..., mT T) is equal to , 1n i mS − − (by ignoring T1, the remaining subtrees

form a neuronal tree with n i− leaves and with a root of degree 1m−).
Therefore we have , 1i n i mS S− − trees. In this case i can change from 1 to 1n m− + ,

so the number of neuronal trees is equal to:
1

, 1
1

.
n m

i n i m
i

S S
− +

− −
=
∑

Hence, the proof is complete.

Theorem 6. Let ,n mN be the number of neuronal trees with n leaves whose first child

has degree less than or equal to m (2 m n≤ ≤). Then we have:
2

, , 1,
2

(2).
m n

n m j i n j n i
i j i

N S S S
−

− −
= =

= +∑ ∑

Proof. Let T be a neuronal tree satisfying the above condition, and let the first child of T

be 1T . Let ()1deg ,2T i i m= ≤ ≤ , and the number of leaves in 1T be j, j can change

between i and 1n− .
First, let us assume 1j n= − , we will have a neuronal tree whose first child (1T) has

degree i and 1j n= − leaves, so 1T has just one brother which is a leaf. Therefore, the

number of such trees is equal to 1, 1 1, .n i n iS S S− −=

Now, let us assume 2i j n≤ ≤ − , we will have a neuronal tree whose first child has

degree i and j leaves and other children (brothers of 1T) have all together n j− leaves.

We have two different cases:
1. T has just two children 1T with j leaves and 2T with n − j leaves. 1T is a

neuronal tree with the root of degree i and j leaves and 2T can be any neuronal

tree with n − j leaves. Therefore, the number of such trees is equal to:
2

, .
n

j i n j
j i

S S
−

−
=
∑

2. T has k > 2 children 1 2, ,..., kT T T such that 1T has j leaves and 2 3, ,..., kT T T

have all together n j− leaves. Since k > 2, if we ignore 1 T , a neuronal tree with

n j− leaves remains. 1T is also a neuronal tree with the root of degree i and j

leaves. Therefore the number of such trees is again equal to:

Mahdi Amani and Abbas Nowzari-Dalini

28

2

, .
n

j i n j
j i

S S
−

−
=
∑

Therefore in total we have:
2

, , 1,
2

(2).
m n

n m j i n j n i
i j i

N S S S
−

− −
= =

= +∑ ∑

Hence, the proof is complete.

For the ranking and unranking algorithms we need to compute in advance nS , ,n mS ,

and ,n mN . These computation can be performed in time O(n) and O(n2). Now, with

regard to the above theorems and definitions we can present a new formula to compute
the rank.

Theorem 7. Let T be a neuronal tree with n leaves whose subtrees are defined by

1 2, ,..., jT T T , and for 1 i j≤ ≤ : | |i iT n= , ()deg i iT d= , and
1

j

ii
n n

=
=∑ , we have:

1

1 1
, 1

1

(,1) 1,

(,) (2((,) 1)).i i
k i kk k

j

i in n d n n
i

Rank T

Rank T n N Rank T n S−

= =
− − −

=

=

 = + − ∑ ∑

∑

Proof. One way to compute the rank of tree T is to enumerate the number of trees
generated before T.

The number of neuronal trees with n leaves whose first subtree is smaller than 1T is

equal to:

1 1, 1 1 12((,) 1) ,n d n nN Rank T n S− −+ −

and the number of neuronal trees with n leaves whose first subtree is equal to 1T but the

second subtree is smaller than 2T is equal to:

1 2 1 2, 1 2 2 ()2((,) 1)n n d n n nN Rank T n S− − − ++ − ,

similarly, the number of neuronal trees with n leaves whose first () 1i − subtrees are

equal to 1 2 1, ,..., iT T T− and the i th subtree is smaller than iT is equal to:

1

1 1
, 1

2((,) 1) .i i
k i kk k

i in n d n n
N Rank T n S−

= =
− − −

+ −
∑ ∑

Therefore, regarding the above enumeration we have:

1

1 1
, 1

1

(,1) 1,

(,) (2((,) 1)).i i
k i kk k

j

i in n d n n
i

Rank T

Rank T n N Rank T n S−

= =
− − −

=

=

 = + − ∑ ∑

∑

So the proof is complete.

Ranking and Unranking Algorithm for Neuronal Trees in B-order

29

Figure 4: Algorithm for calculating the number of leaves in a subtree.

For computing the rank of an S-sequence stored in an array C, we need an auxiliary

array L[i] which keeps the number of leaves in the subtree whose root is labeled by C[i]
and corresponds to in in the above formula. This array is computed by the algorithm

CalculateL given in Fig. 4. In this algorithm “Beg” is a variable that shows the position of
the first character in the array C (when this algorithm is called for first time, the initial
value for “Beg” is 1), and “Fin” is a “call by reference variable” that returns the position
of the last leaf in the subtree whose root is labeled by C[Beg]. We need to emphasis that
“Tmp” is just a local variable used to store the returned value of Fin after each recursive
call. This algorithm is recursive and in each call, for an S-sequence stored in global array
C, the number of leaves of the subtree rooted at C[Beg] with the last leaf in C[Fin] is
calculated. This algorithm is executed just once before calling the ranking algorithm.

Considering Theorem 7 and the algorithm CalculateL, the ranking algorithm is given
in Fig. 5. In this algorithm the variables “Beg” and “Fin” are similar to the variables used
in the algorithm CalculateL, and “Beg” is initially set to 1. As we can see, this algorithm
computes the rank of S-sequence corresponding to a neuronal tree using auxiliary array L
and S-sequence array C; this algorithm recursively returns two important values: first, the
Rank of the subtree rooted at Beg, and second, call-by-reference variable Fin (position of
the last leaf in the subtree whose root is labeled by C[Beg]).

Mahdi Amani and Abbas Nowzari-Dalini

30

Figure 5: Ranking algorithm.

Now the time complexity of this algorithm is discussed. Obviously the time

complexity of the procedure “CalculateL” (shown in Fig. 4), which computes the number
of leaves in each subtree is O(n). This algorithm is executed just once before calling the
ranking algorithm and it has no more time effects on the ranking algorithm, also the
arrays ,nS ,n mS , and ,n mN were precomputed in advance. Therefore we should calculate

the time complexity of the ranking algorithm given in Fig. 5. Let T be a neuronal tree
with n leaves whose subtrees are defined by 1 2, ,..., jT T T and for 1 i j≤ ≤ : | |i iT n= and

1

j

ii
n n

=
=∑ , and let T(n) be the time complexity of the ranking algorithm given in Fig. 5,

then we have: 1 2() () () ... ()jT n T n T n T n jα= + + + + (where α is a constant value

and jα is the time complexity of the non-recursive parts of the algorithm). In [4 (see the
proof for Theorem 5)], Amani et.al, with a simple induction, show that for the above

recursive formula, () ()T n O n= . Therefore our ranking algorithm has the time

complexity of O(n) in the worst case.
If a and b are integer numbers, let (div)a b and (mod)a b denote integer

division and remainder of the division of a and b, respectively
((div) (mod)a a b b a b= × +). Before giving the description of the unranking

algorithm we need to define two new operators. We define (div)a b+ and

(mod)a b+ as follows.

Ranking and Unranking Algorithm for Neuronal Trees in B-order

31

1. If |b a, then (div) (div) 1a b a b+ = − , and (mod)a b b+ = .

2. Otherwise, (div) (div)a b a b+ = , and (mod) (mod)a b a b+ = .
In the unranking algorithm, for a given rank R, we have to find an S-sequence C

corresponding to T such that Rank(T, n) = R. For unranking R, in each step of the
algorithm we need to find the minimum j > 0 such that ,n jN R≥ . Then the number of

leaves in the first subtree of T is(1)j − . Then we have to build the S-sequence for the
first subtree recursively and update R. Considering the above discussion, the unranking
algorithm is given in Fig. 6. In this algorithm, R is the input, Beg is a variable used to
show the position of the first character in the global array C and initially is set to 1. The
generated S-sequence is hold in the array C. The variable n is the number of leaves of the
neuronal tree corresponding to C. As mentioned before, it is assumed that the
precomputed arrays nS , ,n mS , and ,n mN are computed and stored in advance, therefore,

with regard to the non recursive and recursive parts of the unranking algorithm, for a
given neuronal tree T whose subtrees are defined by 1 2, ,..., jT T T , if the time complexity

for unranking algorithm is shown by T(n), we have:

1 2 1 2() (log log ... log) () () ... ().j jT n O n n n T n T n T n= + + + + + + + +

In [4 (see the proof for Theorem 6)], it has been proved that for the above recursive

formula, () () log T n O n n= . Therefore the time complexity of our presented unranking

algorithm is () log O n n .

5. Conclusions
In this paper, we have introduced two new ranking and unranking algorithms for neuronal
trees in B-order. The generation algorithm for neuronal trees in B-order is presented by
Pallo. The time complexities of the presented ranking and unranking algorithms are O(n)
and O(n log n), respectively.

Acknowledgements
This research was partially supported by University of Tehran and Italian Ministry of
Education, University, and Research (MIUR) under PRIN 2012C4E3KT national
research project AMANDA.

Mahdi Amani and Abbas Nowzari-Dalini

32

Figure 6: Unranking algorithm.

REFERENCES

1. A. Ahmadi-Adl, A. Nowzari-Dalini and H. Ahrabian, Ranking and unranking

algorithms for loopless generation of t-ary trees, Logic Journal of IGPL, 19 (2011)
33-43.

2. H. Ahrabian and A. Nowzari-Dalini, On the generation of binary trees in A-order,
International Journal of Computer Mathematics, 71 (1999) 351-357.

3. H. Ahrabian and A. Nowzari-Dalini, Parallel Generation of t-ary trees in A-order,
Computer Journal, 50 (2007) 581-588.

4. Amani, Mahdi, Abbas Nowzari-Dalini, and Hayedeh Ahrabian, Generation of
Neuronal Trees by a New Three Letters Encoding, Computing and Informatics, 33(6)
(2015) 1428-1450.

5. R. Alberich, G. Cardona, F. Rosselló and G. Valiente, An algebraic metric for
phylogenetic trees, Applied Mathematics Letters, 22 (2009) 1320-1324.

6. S. Berger and L. Tucker, Binary tree representation of three-dimentional,
recosytruted neuronal trees: a simple, efficient algorithm, Computer Methods and
Programs in Biomedicine, 23 (1986) 231-235.

7. M. Berry and P. Bradley, The application of network analysis to the study of
branching patterns of large dendritic fields, Brain Research, 109 (1976) 111-132.

8. E. Boros, K. Borys, V. Gurvich and G.Rudolf, Generating 3-vertex connected
spanning subgraphs, Discrete Mathematics, 308 (2008) 6285-6297.

9. S. Durocher, P.C. Li, D. Mondal, F. Ruskey, and A. Williams, Cool-lex order and

Ranking and Unranking Algorithm for Neuronal Trees in B-order

33

k-ary Catalan structures, Journal of Discrete Algorithms, 16 (2012) 287-307.
10. M.C. Er, Efficient generation of k-ary trees in natural order, Computer Journal, 35

(1992) 306-308.
11. S.K. Ghosh, J. Ghosh, and R.K. Pal, A new algorithm to represent a given k-ary tree

into its equivalent binary tree structure, Journal of Physical Sciences, 12 (2008)
253-264.

12. S. Heubach, N. Li, and T. Mansour, Staircase tilings and k-Catalan structures,
Discrete Mathematics, 308 (2008), 5954-5964.

13. J. Katajainen and E. Makinen, Tree compression and optimization with application,
International Journal of Foundations of Computer Science, 1 (1990) 425-447.

14. J.F. Korsh and P. LaFollette, Loopless generation of Gray codes for k-ary trees,
Information Processing letters, 70 (1999) 7-11.

15. D.E. Knuth, The Art of Computer Programming, Vol.1: Fundamental Algorithms,
2nd Ed., Addison-Wesley, Reading, MA, 1973.

16. L. Li, Ranking and unranking AVL trees, SIAM Journal of Computing, 15 (1986)
1025-1035.

17. J. Lucas, D. R.V. Baronaigien, and F.Ruskey, On rotations and the generation of
binary trees, Journal of Algorithms, 15 (1993) 343-366.

18. S. Mandal and M. Pal, A sequential algorithm to solve next-to-shortest path problem
on circular-arc graphs, Journal of Physical Sceinces, 10 (2006) 201-217.

19. O.O. Olugbenga, E.F. Adebiyi, S. Fatumo and A.Dawodu, PQ trees, consecutive
ones problem and applications, International Journal of Natural and Applied
Sciences, 4 (2008) 262-277.

20. S.K. Pal, S. Sen, and P. Manna, Spanning tree based on analytical perspective of
degree sequence, Journal of Physical Sceinces, 13 (2009) 209-216.

21. J. Pallo, Generating trees with n nodes and m leaves, International Journal of
Computer Mathematics, 21 (1978) 133-144.

22. J. Pallo, A simple algorithm for generating neuronal dendritic trees, Computer
Methods and Programs in Biomedicine, 33 (1990) 165-169.

23. K.D. Queiroz and J. Gauthier, Phylogeny as a central principle in taxonomy:
Phylogenetic definitions of taxon names, Systematic Zoology, 39 (1990) 307-322.

24. F. Ruskey, Generating t-ary trees lexicographically, SIAM Journal of Computing, 7
(1978) 424-439.

25. H. Samet and R.E. Webber, Hierarchical data structures and algorithms for computer
graphics, IEEE Computer Graphs & Applications, 8 (1988) 67-75.

26. E. Schröder, Vier combinatorische problem, Zeitschrift f¨ur Angewandte Mathematik
und Physik, 15 (1870) 361-376.

27. E. Seyedi-Tabari, H. Ahrabian and A.Nowzari-Dalini, A new algorithm for
generation of different types of RNA, International Journal of Computer
Mathematics, 87 (2010) 1197-1207.

28. I.P. Stewart, Quadtrees: storage and scan conversion, Computer Journal, 29 (1986)
60-75.

29. T. Uehara and W.M. Cleemput, Optical layout of cmos functional arrays, IEEE
Transaction on Computers, 7 (1981) 305-312.

30. V. Vajnovszki, Listing and random generation of neuronal trees coded by six letters,
The Automation, Computers, and Applied Mathematics, 4 (1995) 29-40.

Mahdi Amani and Abbas Nowzari-Dalini

34

31. V. Vajnovszki and J. Pallo, Generating binary trees in A-order from codewords
defined on four-letter alphabet, Journal of Information and Optimization Science, 15
(1994) 345-357.

32. R. Wu, J. Chang and Y. Wang, A linear time algorithm for binary tree sequences
transformation using left-arm and right-arm rotations, Theoretical Computer Science,
335 (2006) 303-314.

33. R. Wu, J. Chang and C. Chang, Ranking and unranking of non-regular trees with a
prescribed branching sequence, Mathematical and Computer Modeling, 53 (2011)
1331-1335.

34. L. Xiang, K. Ushijima and C. Tang, On generating k-ary trees in computer
representation, Information Processing letters, 77 (2001) 231-238.

35. S. Zaks, Lexicographic generation of ordered trees, Theoretical Computer Science,
10 (1980) 63-82.

